1. Природа электрического тока в газах



бет2/7
Дата01.03.2024
өлшемі141.24 Kb.
#493864
1   2   3   4   5   6   7
рк2 сро

Самостоятельный разряд. Для возникновения самостоятельного разряда недостаточно наличия одного лишь процесса ударной ионизации. Для поддержания разряда необходимо, чтобы в газе постоянно возникали носители электрического заряда без действия внешнего ионизатора. При движении положительно заряженных ионов к катоду их кинетическая энергия под действием поля увеличивается. Если энергия ионов достаточно велика, то при ударе о катод они могут выбивать с его поверхности электроны. Этот процесс называют вторичной электронной эмиссией («эмиссия» означает «испускание»). При бомбардировке катода положительно заряженными ионами происходит его нагревание. При высокой температуре катода с его поверхности происходит испускание электронов. Такой процесс называют термоэлектронной эмиссией. В результате этих процессов в газе создаётся значительное число свободных электронов. В зависимости от давления газа, его температуры и напряжённости электрического поля вторичная электронная эмиссия и термоэлектронная эмиссия могут происходить одновременно.Таким образом, в отсутствие внешнего ионизатора самостоятельный разряд будет поддерживаться за счёт вторичной электронной эмиссии и (или) термоэлектронной эмиссии с поверхности катода.
Виды самостоятельного газового разряда и их применение. В зависимости от напряжённости электрического поля, давления газа, формы и вещества электродов различают следующие виды самостоятельного газового разряда: тлеющий, дуговой, коронный и искровой.
Тлеющий разряд характеризуется небольшой силой тока (десятки миллиампер), относительно высоким напряжением (десятки и сотни вольт), низким давлением газа (десятые доли миллиметра ртутного столба). Тлеющий разряд широко используют в различных газосветных трубках (рис. 206), применяемых для световой рекламы и декораций, лампах дневного света (рис. 207), неоновых лампах.
Дуговой разряд представляет собой столб ярко светящегося газа (рис. 208). Он характеризуется большой силой тока (десятки и сотни ампер) и сравнительно небольшим напряжением (несколько десятков вольт). Дуговой разряд является мощным источником света. Его используют в осветительных установках, для сварки и резки металлов , электролиза расплавов, в промышленных электропечах для плавки стали и др.
Плазма. При достаточно высокой температуре любое вещество испаряется, превращаясь в газ. При дальнейшем увеличении температуры усиливается термическая ионизация. Нейтральные молекулы газа распадаются на составляющие их атомы, которые в дальнейшем превращаются в ионы. Кроме того, ионизация газа может быть обусловлена его взаимодействием с электромагнитным излучением (фотоионизация) или бомбардировкой газа заряженными частицами, например, ионизация электронным ударом.
Плазма — полностью или частично ионизованный газ, в котором концентрации положительных и отрицательных зарядов практически совпадают, т. е. средние плотности положительных ρ+ и отрицательных ρ зарядов одинаковы по модулю: ρ+ = |ρ|.
Рис. 214
В зависимости от степени ионизации различают частично ионизованную и полностью ионизованную плазму. В зависимости от скорости теплового движения заряженных частиц различают низкотемпературную (< 105 К) и высокотемпературную (> 106 К) плазму. Примером низкотемпературной плазмы является плазма, образующаяся при всех видах электрического разряда в газах. Звёзды представляют собой гигантские сгустки высокотемпературной плазмы.
Плазма заполняет космическое пространство между звёздами и галактиками и является самым распространённым состоянием вещества во Вселенной (рис. 214). Концентрация плазмы в межгалактическом пространстве очень мала, в среднем одна частица на кубический метр. Верхний слой атмосферы Земли также представляет собой слабо ионизованную плазму. Причиной ионизации являются ультрафиолетовое и рентгеновское излучение Солнца и других звёзд, быстрые заряженные частицы и др.
Независимо от способа получения плазма в целом является электрически нейтральной. Проводимость плазмы растёт с увеличением отношения числа ионизованных атомов (молекул) к их общему числу. Полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам.

2. Электромагниттік индукция дегеніміз тұйық жүйедегі магниттік толқынның өзгеруі нәтижесінен, сол тұйық жүйеде электр тоғынын пайда болуы.Электромагниттік индукция 1831 жылы 29 тамызда Майкл Фарадеймен ашылған, оның зерттеулері бойынша тұйық жүйедегі магнитті толқынның өзгеру жылдамдығы, осы жүйеде пайда болған электр қозғаушы күшке тура пропорционал екенін ашты. Электрқозғаушы күш арқылы пайда болған электр тоғы индукциялық тоқ болып аталады.


Ара қашықтағы біріне-бірі жақын орналасқан екі ab және cd параллель өткізгіштері бар деп көрейік. аb өткізгіші Б батареясының қысқыштарына қосылған, тізбек Қ кілтпен қосылады, оны тұйықтағанда өткізгіш арқылы a дан b-ға бағытталған ток жүреді. cd — өткізгішінің ұштарына сезгіш амперметр А қосылған, оның нұсқама р тілінің ауытқуы бойынша өткізгіште ток бар екеніне көз жеткізуге болады. Егерде осылай жиналған схемада К кілтті тұйықтасақ, онда тізбек тұйықталған сәтте амперемтрдің тілі ауытқып, cd— өткізгішінде ток бар екенін білдіреді, ал аз уақыт (секундтың бөлігіндей) өткеннен кейін амперметрдің нұскама тілі алғашқы (нольдік) орнына келеді. К кілтінің ажыратылуы тағы да амперметрдің нұсқама тілінің қысқа мерзімдік ауытқуына әкеп соғады, бірақта нұсқама тіл басқа жаққа ауытқып, қарама-қарсы бағыттағы токтың пайда болғанын көрсетеді. Амперметрдің нұсқама тілінің мұндай ауытқуын мынандай жағдайда да К кілтін тұйықтап, аб өткізгішін вг өткізгішіне жақындатсақ немесе одан алыстатсақ бақылауға болады. аб өткізгішін вг-ге жақындатқанда амперметрдің нұсқама тілі К кілтін тұйықтағандағы сияқты бағытта ауытқиды; өткізгіш аб-ны өткізгіш вг-ден алыстату К кілтін ажыратқандағы сияқты бағытта амперметрдің нұсқама тілінің ауытқуына әкеп соғады. Қозғалмайтын өткізгіштер мен тұйықталған К кілті жағдайында cd — өтікізгішінде, аб өткізгішіндегі токты өзгерте отырып ток тудыруға болады. Егерде орамасының ішіне тездетіп тұракты магнит (немесе электромагнит) кіргізсек онда ол кірген сәтте А амперметрдің нұсқама тілі ауытқиды, ал магнитті шығарған уақытта амперметрдің тілінің тағы да, бірақ та басқа жаққа қарай, ауытқығанын бақылауға болады. Осындай жағдайларда пайда болатын электр токтары индукциялық токтар деп аталады, ал осы индукциялық токтардың тууына әкелетін себепкер құбылыс — индукцияның электр қозғаушы күші деп аталады. Өткізгіштердегі бұл электр қозғаушы күші (ЭҚК) осы өткізгіштер ішінде тұратын, өзгеріп отыратын магнит өрістерін ің әрекетінен пайда болады.
Магнит өрісінде орын ауыстырып тұратын өткізгіштегі индукцияның ЭҚК-нің бағыты оң қол ережесі бойынша анықталады, ол былай деп тұжырымдалады: егерде оң қолымыздың алақанын солтүстік полюсқа қаратып жайсақ, ол жазылған бас бармағымыз өткізгіш қозғалысының бағытын көрсетсе, онда қосылған төрт саусағымыз индукцияның электр қозғаушы күшінің бағытын көрсетеді.
Ленц ережесі бойынша анықтайды, ол былайша тұжырымдалады: индукцияның электр қозғаушы күші әрқшанда мынандай бағытта болады, ол тудырған индукциялық ток өзін тудыратын себептерге қарама-қарсы әсер етеді.
Тұйықталған өткізгіште туатын индукцияның ЭҚК-і осы өткізгіштің контурын тесіп өтетін магниттік ағынның өзгеру жылдамдығына пропорционал. Сонымен, егерде тұйықталған өткізгіштің контурын тесіп өтетін магниттік ағын ...t секунд ішінде ...Ф-ға азайса, онда магниттік ағынның азаюы ..Ф/t-ға тең болады. Осы қатынас индукцияның ЭҚК-і болып табылады, яғни е = Ф/t- мұндағы теріс таңба белгісі индукцияның ЭҚК-і тудырған ток осы ЭҚК-і тудыратын себептерге қарама-қарсы әсер ететінін көрсетеді.


Кедергі мен индуктивтігі бар тізбекті қосқан кезде, ток бірден өзінің тұрақталған мәні


Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©dereksiz.org 2025
әкімшілігінің қараңыз

    Басты бет