1. Закон сохранения электрического заряда


Напряженность поля на продолжении оси диполя



бет5/19
Дата08.03.2024
өлшемі0.51 Mb.
#494731
түріЗакон
1   2   3   4   5   6   7   8   9   ...   19
Электричество

1. Напряженность поля на продолжении оси диполя в точке А (рис. 6). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через r, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l/2< поэтому

2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В (рис. 6). Точка В равноудалена от зарядов, поэтому
4)
где r' — расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор ЕB, получим

откуда
(80.5)
Рис. 5
Подставив в выражение (5) значение (80.4), получим

Вектор ЕB имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).
.

5 Потенциал электростатического поля


Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа. Как известно , работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу сил электро­статического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:
(1)
Рис. 15
откуда следует, что потенциальная энергия заряда qq в поле заряда Q равна

Она, как и в механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при удалении заряда в бесконечность (r) потенци­альная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, находящегося в поле заряда Q на расстоянии г от него, равна
(.2)
Для одноименных зарядов Q0Q>0 и потенциальная энергия их взаимодействия (оттал­кивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.
Если поле создается системой n точечных зарядов Q1, Q2, ..., Qn, то работа электростатических сил, совершаемая над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, находящегося в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов:
(3)
Из формул (.2) и (.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, называемой по­тенциалом:
(.4)


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   19




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет