99 Реймерс Н. Ф. Экология (теории, законы, правила принципы и гипотезы) —


Закономерности распространения сообществ



бет8/32
Дата11.07.2016
өлшемі4.35 Mb.
#192699
1   ...   4   5   6   7   8   9   10   11   ...   32

3.7.3. Закономерности распространения сообществ

  • Правило А. Уоллеса

  • Принцип эколого-географического максимума (стабильности числа) видов

  • Принцип взаимоисключаемости биотических комплексов И. И. Дедю

  • Правило смены вертикальных поясов

  • Правило предварения, или правило постоянства местообитания И. Вальтера — В. В. Алехина

  • Закон минимума видов, или эффект А. Ремане

  • Принцип территориальной общности физико-географических единиц

  • [Закон обеднения разнородного живого вещества (биоты) в островных его сгущениях Г. Ф. Хильми] (разд. 3.2.5)

  • Правило К. Дарлингтона

  • Правило Манро

  • Теория биполярности

Наиболее общей закономерностью, видимо, следует признать сформулированное А. Уоллесом в 1859 г. правило увеличения видового разнообразия по мере продвижения с севера на юг, или правило Уоллеса. Оно касается как видов, так и составляемых ими сообществ: в тропиках значительно больше абсолютное число видов, чем на Севере, и в составе южных сообществ их также намного больше. Причины возникновения такой разницы многообразны. Их можно разделить на две группы — эволюционно-гео-исторические и географо-экологические. Северные ценозы исторически моложе и находятся в условиях меньшего поступления энергии от Солнца. Однако едва ли можно считать, что со временем, скажем, биоценозы тундры станут богаче видами. Если обратить внимание на степень замкнутости круговорота веществ в тропиках и в северных районах, то нетрудно заметить, что и там, и там практически не образуется накоплений органического вещества — гумуса почв. Видимо, энергетическое совершенство в соответствии с законом максимализации энергии и информации (разд. 3.2.3) выработано экосистемами всех ландшафтно-географических зон. В них существует столько видов, сколько необходимо для максимальной утилизации приходящей энергии и обеспечения круговорота веществ в рамках энергетического потока. В связи с этим следует к правилу Уоллеса добавить принцип эколого-географического максимума (стабильности числа) видов: число видов в составе географических зон и их экосистем относительно постоянно и регулируется вещественно-энергетическими процессами. Это число всегда естественно стремится к необходимому и достаточному максимуму.
Этот принцип явно связан с общим правилом числа видов в биосфере Земли (разд. 3.11).
Человеческая деятельность снижает видовое разнообразие. Биотические системы начинают работать в необычном режиме нехватки видов. Компенсация происходит за счет увеличения числа особей согласно принципу экологического дублирования (разд. 3.8.1). Однако значительное и быстрое снижение числа видов и составляющих их особей может резко нарушить действие принципа эколого-географического максимума (стабильного числа) видов. Это ведет к тому, что не удовлетворяется и требование принципа Ле Шателье — Брауна (разд. 3.2.3). Экосистема высокого ранга начинает саморазрушаться. Если этот процесс идет с большой скоростью, происходит заметное опустынивание территории (песчаные пустыни известны, например, даже в тайге Забайкалья и Сахалина). В других случаях складывается природная системная совокупность с иным максимумом видов и новым балансом круговорота веществ. Для этого наиболее благоприятны условия умеренных географических поясов, где круговорот веществ явно незамкнут, вернее, его долговременный баланс опосредован накоплением органики в почвах, в торфах болот, а в тайге также и в столетиями гниющих погибших деревьях. Буферность экосистем умеренных поясов Земли выше, чем тропических и северных, поэтому уничтожение видов в этих двух последних и отход от удовлетворения условий принципа эколого-географического максимума (стабильности числа) видов тут предоставляет большую опасность для экологического благополучия этих регионов, а, возможно, и биосферы в целом.
Принцип конкурентного исключения Г. Ф. Гаузе и правило викариата Д. Джордана (разд. 3.7.1) характерны не только для видов, занимающих одну экологическую нишу, но и для функционально аналогичных сообществ, селящихся в очень близких условиях среды. И. И. Дедю в неоднократно упоминавшемся словаре приводит пример фаун ракообразных каспийского и древнепресноводного происхождения, которые в пределах Каспийско-Азово-Черноморского бассейна не смешиваются вопреки их сходству по экологическим требованиям. Популяции взаимоисключающих видов становятся членами лишь одной из викарирующих соседних экосистем (это показатель значительной взаимозависимости членов сформированного ценоза). Указанный автор формулирует принцип взаимоисключаемости биотических комплексов: две генетически сходные группы организмов разного происхождения, обладающие близкими (одинаковыми) требованиями к окружающей их среде, взаимоисключают друг друга. Совершенно очевидно, что этот принцип следует учитывать при попытках акклиматизировать виды, относящиеся к различным, но близким биотическим комплексам. Такие попытки либо окончатся неудачей, либо будут разрушительны. Это обычно и наблюдается.
Правило А. Уоллеса, с которого начался обзор в этом разделе, справедливо для географической зональности в целом и для аналогичных биотических сообществ, но именно лишь для аналогичных, так как отсутствие или присутствие одного или (как правило) группы видов свидетельствует о том, что мы имеем дело не с той же, а с другой экосистемой (согласно правилу соответствия вида и ценоза — см. разд. 3.7.1). При этом аналогичные экосистемы могут оказываться в рамках различной вертикальной зональности — чем южнее, тем в более высоких поясах гор (правило смены вертикальных поясов), или на склонах иной экспозиции; например, на северных склонах образуются экосистемы более северных ландшафтных разностей. Последнее явление было формально установлено в 1951 г. В. В. Алехиным и И. Вальтером в виде правила предварения, или правила постоянства местообитания (плакорный вид или плакорный биоценоз предваряется на юге или на севере в соответствующих условиях местообитания, что связано с меньшей или большей инсоляцией склонов различной экспозиции) . В ряде случаев образуются участки незональных ценозов, соответствующие более северным или южным зонам (например, степные участки и тайга). Эти участки нельзя считать адекватными зональными (соответственно степные участки в тайге называют «степоидами»). Обычно в этих маргинальных образованиях ценозы беднее видами.
Видимо, именно обедненность ценозов в зонах контакта климатических и экологических зон формирует закономерность, известную как закон минимума видов, или эффект А. Ремане (этот автор открыл и сформулировал правило в 1934 г.): минимум морских и пресноводных видов животных наблюдается в солоноватых водах (соленость 5 — 8‰). В данном случае возникает не географическая, а экологическая, функциональная маргинальность.
В пограничных полосах между географическими зонами и вертикальными поясами часто число видов больше, чем в центральных частях этих зон и поясов за счет мозаичности экосистем, принадлежащих к соседним зонам, и так называемого эффекта экотона (разд. 3.9). При этом физиономические «гибриды» ландшафтно-географических зон (лесотундра, лесостепь и тому подобное) часто оказываются самостоятельными образованиями со своим видовым составом биоты, особыми биогеоценотическими закономерностями и другими характеристиками.
Островные экосистемы, возникшие в результате дробления изначальных при их нарушении человеком, составляют целостные природные образования (надсистемы) более высокого иерархического уровня, и, соответственно, функционально целостные физико-географические территориальные единицы образуются лишь в том .случае, если эти экосистемы расположены не как изолированные, удаленные друг от друга участки, а как относительно компактная, хотя и мозаичная совокупность. Этот очевидный факт носит название принципа территориальной общности физико-географических единиц (районов, провинций и т. п.).
Менее очевиден сформулированный Г. Ф. Хильми и оставшийся почти незамеченным научной общественностью закон обеднения разнородного живого вещества (биоты) в островных его сгущениях. В авторской трактовке: «индивидуальная система, работающая в ... среде с уровнем организации более низким, чем уровень самой системы обречена: постепенно теряя структуру, система через некоторое время растворится в окружающей... среде»*.


* Хильми Г. Ф. Основы физики биосферы. Л.: Гидрометеоиздат, 1966. С. 272.
Другие названия этого обобщения — принцип организационной деградации и закон растворения системы в чуждой среде (разд. 3.5.2). Фактически это общесистемный закон. Он тесно связан с законом оптимальности и в значительной мере отражает термодинамику малой системы, находящейся в чуждой среде. Здесь мы вновь возвращаемся к нему, акцентируя внимание на биоте, поскольку искусственное сохранение экосистем лишь малого размера (на ограниченной территории, например, при заповедании) ведет к их постепенной деструкции и не обеспечивает целей сохранения видов и их сообществ. Чем выше разница между уровнем организации островной биосистемы и ее окружения, тем скорее происходит деградация биоты. Одновременно меняются и все остальные компоненты экосистемы, так что сохранить островную биоту изолировано на малых территориях при любых условиях в длительном интервале времени практически невозможно.


* Число видов на острове математически зависит от логарифма его площади. Это правило Манро (Е. Q. Munroe) было им предложено в 1948 г. и стало широко известно после трудов Мак-Артура и Уилсона (1963, 1967).
Законом обеднения разнородного живого вещества Хильми объясняется бедность ценозов видами при действии правила предварения (см. выше). Одновременно он тесно связан с известным биогеографическим правилом О. Дарлингтона: уменьшение площади острова в 10 раз сокращает число живущих на нем видов (амфибий и рептилий) вдвое*. Конечно, речь идет об островах, находящихся в разных физико-географических условиях. Правило К. Дарлингтона верно лишь статистически и имеет множество исключений. Например, герпетофауна относительно небольшого (1550 км2) острова Кунашир не менее богата, чем рядом расположенного обширного Хоккайдо (77,7 тыс. км2). Однако идентифицировать физико-географические условия этих и других островов очень непросто. В равных условиях правило Дарлингтона, видимо, вполне справедливо.
В данном случае закон обеднения разнородного живого вещества Г. Ф. Хильми сопряжен с правилом К. Дарлингтона лишь косвенно. Остров, окруженный водными пространствами, находится не в упрощенной, а в совершенно чуждой среде, непригодной для жизни наземных существ. Видовой состав на его территории формируется в результате упрощения, если остров материковый и маленький, или в процессе заселения, если остров океанический. В последнем случае играют роль случайности переноса организмов, процессы, связанные со всем комплексом закономерностей, формирующих ареал (разд. 3.7.1), важен принцип основателя (разд. 3.7.2), действуют законы формирования и функционирования сообществ (разд. 3.8), экосистемные законы (разд. 3.9), а в ряде случаев и группа закономерностей изменения природы человеком. Естественно, что при таком огромном стечении обстоятельств трудно ожидать, чтобы правило К- Дарлингтона было выражено иначе, чем статистически.
Завершим раздел так называемой теорией биполярности, согласно которой жизнь Арктики и Антарктики аналогична по происхождению и имеет истоки в третичном времени. Это эволюционно-биогеографическое правило продробно обосновал Л. С. Берг.
От географического распространения организмов и сообществ целесообразно перейти к законам формирования и функционирования последних: алгоритм мысли — что, где, как работает? Сначала попытаемся обобщить закономерности, характерные для работы биотических сообществ, а затем и для экосистем в целом.

3.8. ЗАКОНЫ ФУНКЦИОНИРОВАНИЯ БИОЦЕНОЗОВ И СООБЩЕСТВ

Синэкология как раздел экологии возникла сравнительно недавно — в начале нашего века (термин предложен швейцарским ботаником К. Шретером в 1902 г., формальное выделение синэкологии произошло на международном ботаническом конгрессе в 1910 г.). К нашим дням она разрослась в значительный куст знаний, начиная от анализа первичных межпопуляционных связей (или даже связей внутри популяции, если к синэкологии относить популяционную экологию, равно принадлежащую и аутоэкологии) и кончая теорией экосистем. Промежуток заполняют учение о трофических цепях и сетях, синузиях и консорциях, фитоценология, знания о зоо-, микробо- и других ценозах, выделяемых по систематическому признаку, биоценология как целое, учение о сукцессиях, длинный ряд дисциплин, исследующих экосистемы всех сред жизни, а при широком понимании экологии и все ее стороны, связанные с человеком (кроме аутоэкологии человека). Казалось бы, при таком развитии науки вопрос о реальности существования одного из ее основных объектов — сообществ, или биоценозов*, системно ограниченных в пространстве, должен был быть решен окончательно и бесповоротно с самого начала.




* Строго говоря, сообщество и биоценоз — неоднозначные понятия. Биоценоз (ценоз), по своему основному определению населяет строго определенный биотоп, а потому более или менее четко отграничен в пространстве. Он обязательно состоит из продуцентов, консументов и редуцентов, если все они могут существовать в рамках биотопа (исключения очень редки или даже отсутствуют). Сообщество — также система популяций видов, конкурирующих между собой и формирующих экологические ниши, но отнюдь не обязательно состоящая из всех трех биотических экологических компонентов. Выделяют сообщества только растений, в основном продукцентов (фитоценоз), только животных (зооценоз), только микроорганизмов (микробоценоз, или бактериоценоз) и т. п. Сказать «биоценоз растений» нельзя, а «сообщество растений» — можно. В американской литературе (см. Ю. Одум. Основы экологии. М.: Мир, 1975. 740 с. С. 181) понятия биотическое сообщество и биоценоз совпадают (как живая часть экосистемы). Ю. Одум не рассматривает отдельно фитоценозы, микробоценозы и т. п. Р. Риклефс (Основы общей экологии. М.: Мир, 1979. 424 с.) тоже по сути дела ставит знак равенства между сообществами и экосистемами, хотя (с. 330 — 331) говорит о группах взаимодействующих популяций.
Однако до сих пор высказываются сомнения в реальности пространственной отграниченности и реальности биоценозов как структурных образований типа надорганизма, или квазиорганизма. Б. М. Миркин и Г. С. Розенберг в «Толковом словаре современной фитоценологии» (М.: Наука, 1983, статья «Парадигма в фитоценологии») решительно утверждают, что «в настоящее время парадигма организмизма в основном представляет уже чисто исторический интерес» (стр. 87).
Непрерывность и прерывистость биотических образований идут рука об руку, и противопоставление парадигмы организмизма и континуума кажется искусственным. Приверженность авторов к той или другой парадигме в значительной мере объясняется материалом, который они изучали. В сильно нарушенных человеком местностях физиономическая дискретность биоценозов столь затушевана, что ее подметить совершенно невозможно. Тут рационален и необходим весь арсенал методик и методологических подходов, выработанный фитоценологами — сторонниками концепции непрерывного континуума. В слабо нарушенной человеком природе обычно положение иное. Если естественные условия жизни весьма однородны, возникают очень протяженные биотопы, а потому и биоценозы, иногда как в тропиках или тундре, занимают огромные пространства. Однако они системно индивидуальны и функционально отграничены. Там, где условия среды резко колеблются на относительно небольшом пространстве, и возникает мозаика биотопов, например, как в южной тайге Сибири, в ее горах, проявляются узко локальные черты квазиорганизма в биотическом покрове. Границы биоценозов в этом случае бывают очень резкими, буквально линейными (их определяет, например, граница речной долины, хребет склона южной и северной экспозиции и т. п.). Если же рассматривать иерархию экосистем, как было сделано в главе 2, то совершенно ясно, что континуума между сушей и океаном, океаном и континентальными водоемами и т. д. практически нет.
Несомненно, выделение биоценозов и сообществ как структурных образований условно, так как они входят в ткань биоты всего земного шара, но и игнорирование реальности этих образований нелепо, ибо они функционально существуют. Ситуация здесь совершенно аналогична той, что имеется в понятии «индивид» при рассмотрении колониальных особей гидроидных полипов и общественных насекомых. Рабочий муравей или «царица» — реально существующие отдельности, могущие быть объектом исследования, но вместе с тем они неотделимы от своего колониального сообщества, особенно если их рассматривать в длительном интервале времени. Собственно, таков и любой другой организм как особь и индивид. В данный момент он существует, но исчезает после деления или индивидуальной смерти, а потому он как бы есть и как бы его нет в рамках вида и эволюции живого. Все зависит от пространственной и временной шкалы восприятия.
Поскольку единство прерывности и непрерывности есть общее свойство не только живого, но и всего мира, едва ли нужно формулировать какой-то особый принцип для органического мира и экологии как науки, его изучающей.
Однако история науки такова, что борьба парадигм непрерывности — континуума и организмизма породила взаимоисключающие правила, или принципы. Их пришлось включить в разд. 3.8.2.

3.8.1. Энергетика, потоки веществ, продуктивность и надежность сообществ и биоценозов

  • Закон пирамиды энергий, или закон (правило) 10 % Р. Линдемана

  • Правило биологического усиления

  • Правило «метаболизм и размеры особей», или правило Ю. Одума

  • Закон удельной продуктивности

  • Правило (принцип) экологического дублирования

  • Принцип (правило) эквивалентности В. Тишлера

  • Принцип подвижного равновесия А. А. Еленкина

  • Принцип продукционной оптимизации Г. Реммерта

  • Принцип стабильности

  • Правило биоценотической надежности

Прежде всего следует напомнить закон (принцип) «энергетической проводимости» (разд. 3.2.3), характерный и для сообществ, и для биоценозов. Иначе не возникла и не сохранилась бы их целостность. Сквозной поток энергии, проходя через трофические уровни биоценоза, постепенно гасится. В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10%, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент — консумент — редуцент) в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее — не более 0,5% (даже 0,25%) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.
Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелирует с массой жиров (липидов), т. е. явно имеет энергетическую подоснову.


* Фактически это общесистемый закон: крупные предприятия эффективнее мелких и т. п. Однако в пределах закона оптимальности.
При неизменном энергетическом потоке в пищевой сети, или цепи, более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные*. Значительная часть энергии уходит на поддержание обмена веществ. Это правило «метаболизм и размеры особей», или правило Ю. Одума, обычно не реализуется в водных биоценозах при учете реальных условий обитания в них (в идеальных условиях оно имеет всеобщее значение). Связано это с тем, что мелкие водные организмы в значительной мере поддерживают свой обмен веществ за счет внешней энергии непосредственно окружающей их среды.
На правило Ю. Одума следует обратить пристальное внимание, поскольку из-за антропогенного нарушения природы происходит измельчение «средней» особи живого на суше — крупные звери и птицы истреблены, вообще все крупные представители растительного и животного царства все больше и больше делаются раритетами. Это неминуемо должно вести к общему снижению относительной продуктивности организмов суши и термодинамическому разладу в биосистемах, в том числе сообществ и биоценозов.
Не исключено, что этот разлад служит одним из факторов сбоя в действии принципа Ле Шателье — Брауна (разд. 3.2.3).
Если измельчание особей, согласно правилу Ю. Одума, ведет к производству относительно меньшего объема биомассы, то удельный ее выход с единицы площади в силу более полного заселения пространства увеличивается. Никогда слоны не дадут той биомассы и продукции с единицы площади, какую способна дать саранча и, тем паче, еще более мелкие беспозвоночные. Обсуждаемый эмпирический факт можно назвать законом удельной продуктивности. Кстати, он справедлив для многих системных образований. Так, мелкие предприятия и фермы в сумме могут производить большую хозяйственную продукцию, чем крупные, а тем более крупнейшие, В этом успех мелкого предпринимательства наших дней. Мощные энергоисточники создают тепловые пятна в атмосфере, а потому большие возмущения в ее физике, чем мелкие, равномерно распределенные в пространстве. Именно более полное использование дисперсной энергии составляет подоснову действия закона удельной продуктивности. Этот закон тесно связан с законом оптимальности (разд. 3.2.1). Видимо, его действие сглаживает многие негативные процессы, возникающие в биосфере по вине человека.

Рис. 3.6. Потоки энергии и механизм обеспечения надежности биотических систем в биосфере:
1, 2, 3... — потоки энергии через виды, а — а1... — связи между ними; А — состояние до уничтожения вида 3; Б — вид 3 исчез, проходившие через него потоки энергии идут через дублирующие виды 2 и 4

Исчезновение видов, составленных крупными особями, меняет вещественно-энергетическую структуру ценозов. Поскольку энергетический поток, проходящий через биоценоз и экосистему в целом практически не меняется (иначе бы произошла смена типа ценоза), включаются механизмы биоценотического, или экологического, дублирования: организмы одной трофической группы и уровня экологической пирамиды закономерно замещают друг друга. Принципиальная схема такой замены показана на рис. 3.6. Правило (принцип) экологического дублирования можно сформулировать следующим образом: исчезающий или уничтожаемый вид живого в рамках одного уровня экологической пирамиды заменяет другой функционально-ценотический, аналогичный, по схеме: мелкий сменяет крупного, эволюционно ниже организованный более высокоорганизованного, более генетически лабильный и мутабельный менее генетически изменчивого. Поскольку экологическая ниша в биоценозе не может пустовать (разд. 3.8.2), экологическое дублирование происходит обязательно. И действительно, копытных в степи сменяют грызуны, а в ряде случаев растительноядные насекомые. При отсутствии хищников на водоразделах южного Сахалина в бамбучниках их роль выполняет серая крыса. Видимо, таков же механизм возникновения новых инфекционных заболеваний человека. В одних случаях возникает совершенно новая экологическая ниша, а в других борьба с заболеваниями и уничтожение их возбудителей освобождает такую нишу в человеческих популяциях. За 13 лет до открытия ВИЧ (возбудителя СПИДа) была предсказана вероятность появления «гриппоподобного заболевания с высокой летальностью». К сожалению, на докладную записку, поданную мною в Госкомитет по науке и технике никто не обратил внимания, а опубликовать что-то по этому поводу было невозможно из-за жесткой цензуры*.


* Теоретические основы экосистемного дублирования были сформулированы в статье: Реймерс Н. Ф. Системные основы природопользования//Философские проблемы глобальной экологии. М.: Наука, 1983. С. 121 — 161. Рукопись до опубликования пролежала 10 лет.
Экологическое дублирование происходит не только на видовом парном уровне (один вид сменяет другой), но и на уровне сообществ, которые выступают как гамакообразные структуры в технических системах. Такую же роль могут играть пищевые цепи и сети. А поскольку дублирование происходит на основе кибернетического принципа голосования, вместо одного готового блока может включаться другой: сообщество, связанное с одним видом-эдификатором заменяется сообществом, формируемым другим видом-эдификатором. Один вид может быть заменен группой видов (сетевая замена), или наоборот, группа видов исчезает, а вместо них их вещественно-энергетическую функцию станет исполнять всего один вид. Сообщества (синузии, консорции) могут работать как смесители в технических устройствах, где формируется энергетический поток.
Практическое значение экологического дублирования и множественности элементов ценозов очень велико. Известно, что монокультуру, например, гевеи, в тропической зоне вообще невозможно создать из-за неполноты ценозов для ее произрастания (там, где нет ее вредителей, это удается).
Географическое дублирование реализуется согласно принципу (правилу) эквивалентности В. Тишлера (1955): в географически удаленных, но экологически сходных биотопах идентичные биоценотические функции выполняют систематически различные виды, занимающие эквивалентные экологические ниши. В этом легко убедиться, сравнивая конвергентные биоценозы Евразии и Северной Америки. Их называют «изоэкиями» (Г. Гаме, 1918), изоценами или изоценозами (В. Тишлер, 1955). Наличие изоценозов служит одним из важных доказательств энергетического в его основе правила экологического дублирования.
Дублирование — один из механизмов поддержания надежности ценозов. Это наиболее мобильный способ их адаптации. Дублирование может быть и отрицательным — с выпадением видов и части трофических звеньев. Оно может быть полным (очень редко) или частичным, отражающимся лишь на плотности населения или даже лишь характеристиках кроны деревьев, густоты дерновых трав, половозрастном составе популяций животных и тому подобном. Возможны и генетические изменения в популяциях типа усиления хищнических наклонностей у крысы в приведенном для Сахалина примере. Возможно межвидовое и внутривидовое дублирование, а в сельском хозяйстве даже межсортовое. Общий «смысл» остается тем же — максимально полное проведение и использование потока энергии, стабилизация ценоза в меняющихся условиях существования. Это свойство было подмечено А. А. Еленкиным, который в 1921 г. сформулировал принцип подвижного равновесия: биотическое сообщество сохраняется как единое целое вопреки регулярным колебаниям среды его существования, но при воздействии необычных факторов структурно изменяется с переносом «точки опоры» на другие растительные компоненты (группы растений). Если необычные, нерегулярные факторы оказывают многолетнее воздействие, то сообщество формирует иную структуру. Однако следует заметить, что, как правило, сохраняются элементы дублирования в виде малочисленных в ценозе видов, которые могут быть мобилизованы в случае новых резких изменений среды.
Балансовый подход был уточнен сформулированным Г. Реммертом (1978) принципом продукционной оптимизации: отношение между первичной и вторичной продукцией (между продуцентами и консументами) соответствует принципу оптимизации — «рентабельности» биопродукции. Как правило, растения и другие продуценты дают биомассу достаточную, но не излишнюю, для потребления всем биотическим сообществом (с эволюционно определенным запасом, который обеспечивает надежность системы и обычно в 100 раз превышает потребление в экосистемах суши). При относительном «перепроизводстве» органического вещества биоценоз становится «нерентабельным», возникают предпосылки для массового размножения отдельных видов. После периода автоколебаний отношение «популяция — потребление» уравновешивается, биоценоз стабилизируется, балансируются отношения между трофическими уровнями.
Именно благодаря экологическому дублированию, сдвигу в подвижном равновесии и снижению «рентабельности» ценоза возникают массовые размножения нежелательных в хозяйстве организмов. Монокультура в сельском хозяйстве, однопородные и одновозрастные леса с «точки зрения» природы весьма мало рентабельны, неравновесны и поэтому «требуют исправления» массовыми организмами.
Все перечисленные закономерности саморегуляции ценозов обобщаются в виде принципа стабильности: любая относительно замкнутая биосистема с проходящим через нее потоком энергии в ходе саморегуляции развивается в сторону устойчивого состояния. Этот принцип характерен не только для ценозов нижнего уровня иерархии, но и для биосферы в целом. Об этом будет упомянуто в разд. 3.10. Еще раз мы кратко вернемся к принципу стабильности в конце разд. 3.8.3. Тут важно то, что ценоз стремится к нормальной «энергетической проводимости» с помощью механизмов, обобщенно сформулированных в правилах (принципах) экологического дублирования, эквивалентности, подвижного равновесия, продукционной оптимизации и, вероятно, других, еще не открытых исследователями.
Если принцип стабильности справедлив, то парадигма континуума получает еще одно ограничение, а парадигма организма — лишний аргумент своей справедливости. Правда, система может складываться и из ненадежных элементов — см. правило конструктивной эмерджентности (разд. 3.2.1).
Очевидно, возможно сформулировать и обобщающее правило биоценотической надежности: надежность ценоза зависит от его энергетической эффективности в данных условиях среды и возможностей структурно-функциональной перестройки в ответ на изменение внешних воздействий (материала для дублирования, межвидового и внутривидового, поддержания продукционной «рентабельности» и т. п.). Совершенно очевидно, что все эти характеристики ценозов сугубо индивидуальны, но вместе с тем аналогово формируются в сходных условиях среды (принцип эквивалентности). Это дает канву для понимания механизмов функционирования биоценозов, а в случае приложения к одному экологическому биокомпоненту или даже систематической группе, и к сообществу.
Энергетико-продукционные закономерности и способы сохранения экологического равновесия и надежности тесно связаны со структурой биоценозов (как и любых других систем). Попробуем сформулировать имеющиеся обобщения в этой области.


Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   ...   32




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет