А. Скляров Сенсационная история Земли (Сколько на самом деле лет нашей планете?) электронная версия книги



бет14/16
Дата27.06.2016
өлшемі12.37 Mb.
#160037
түріАнализ
1   ...   8   9   10   11   12   13   14   15   16

Во-первых. Из числа осадочных отложений (понимаемых в качестве медленно осаждающихся накоплений на поверхности земли и на дне водоемов), по которым прежде всего и пытаются выстраивать геохронологическую шкалу, надо исключать все залежи каменного и бурого угля (графита, шунгита и др. аналогичных углеродистых минералов).

Во-вторых. Из числа осадочных отложений надо исключать также отложения солей, ангидридов, гипса и т.п. (или по крайней мере подавляющую их часть).

В-третьих. Надо либо четко доказывать обоснованность «принципа неполноты геологической летописи» (что, на мой взгляд, просто нереализуемо в силу абсолютно объективных причин), либо отказываться от него (по крайней мере в заявляемых масштабах) и существенно сокращать количество «несогласий».

И в-четвертых, необходимо учитывать отличие условий по скорости накопления осадков (седиментации) в прошлом – на малой Земле (до начала процесса расширения) – от условий для современного осадконакопления.

В целом, все склоняется к тому, что геохронологическая шкала вынуждена будет существенно сократиться.

Насколько?.. Неизвестно…

Для получения сколь-нибудь обоснованного результата необходимо – с учетом вышесказанного – пересматривать абсолютно все стратиграфические шкалы на предмет их, во-первых, сокращения за счет исключения (из анализа продолжительности формирования) слоев неосадочного происхождения, а во-вторых, на предмет их совершенно иного соотнесения как со стратиграфическими данными других регионов, так и с общей «сокращающейся» геохронологической шкалой, которую также надо выстраивать абсолютно заново!..

Шансов сократиться до библейского варианта всего в шесть тысяч лет у новой геохронологической шкалы явно нет никаких. Но и миллиарды лет, похоже, тоже будут уже не нужны…

* * *


Однако тут «просвещенный» читатель может возмутиться – ведь есть же исследования по определению «абсолютного возраста» геологических пород!.. И результаты этих исследований не только «подтверждают» почтительный возраст нашей планеты в 4,5 миллиарда лет, но и «подкрепляют» принятую ныне геохронологическую шкалу «точными» цифрами (в виде тех самых золотистого цвета «гвоздей» в правой колонке шкалы на Рис. 6на стр. 12)…

Действительно – подобные исследования проводятся достаточно давно и вовсе не единственным способом. Между тем и тут далеко не все так просто, как может показаться на первый взгляд. Анализ различных деталей и нюансов «абсолютного датирования» достаточно легко выявляет целый ряд серьезнейших проблем, какой из методов этого датирования не возьми.

Но из всего многообразия различных способов определения абсолютного возраста геологических пород я далее ограничусь рассмотрением всего лишь одного – радиоизотопного метода. Более того, из всех возможных изотопных методов я остановлюсь только на наиболее распространенных и наиболее используемых в датировании пород и минералов. Этого будет вполне достаточно, поскольку основные проблемы радиоизотопных методов являются общими для них всех…

Анализом каких-либо иных способов «абсолютного датирования» можно и вовсе не заниматься по довольно простым причинам. Во-первых, все остальные методы обладают менее апробированными (проверенными на практике) методиками и существенно более высокими погрешностями. И во-вторых, другие методы так или иначе «завязаны» на изотопный метод датирования. И прежде всего тем, что они калибруются («выверяются») этим методом.

А главное – именно изотопное датирование положено в основу геохронологической шкалы.

* * *


История и методология изотопного датирования

Все началось с того, что в конце XIX века (Беккерель, 1896) было обнаружено, что в природе существуют элементы, атомные ядра которых не стабильны, а распадаются со временем. В дальнейшем выяснилось, что даже считавшиеся стабильными элементы могут иметь радиоактивные изотопы, также обладающие ограниченным временем жизни. Измерение количества исходных (материнских) радиоактивных изотопов и продуктов их распада (дочерних изотопов) в геологических породах и легло в основу определения абсолютного возраста этих пород.





Рис. 142.Антуан Анри Беккерель и Эрнест Резерфорд

«В курсе лекций, прочитанных Резерфордом в Йельском университете в 1905 году, он показал, что возраст урановых минералов можно вычислять путем измерения количеств гелия, накапливаемого такими минералами. Резерфорд практически выполнил подобное определение возраста нескольких урановых минералов и получил значения около 500 миллионов лет…

Состояние проблемы было тщательно проанализировано Артуром Холмсом [Рис. 58 на стр. 98] в книге «Возраст Земли», которая вышла в свет в 1913 году, когда автору было 23 года. В этой книге Холмс убедительно показал важность использования радиоактивности в решении вопроса о возрасте Земли и составил первую геохронологическую шкалу. Шкала была основана на рассмотрении данных о мощности отложений осадочных пород и анализе данных об образовании гелия и свинца в урансодержащих минералах…

В геохронологической шкале, опубликованной Холмсом в 1913 году для архейских гнейсов, приводился возраст 1300 миллионов лет, однако Холмс предполагал, что возраст самых древних архейских пород должен быть около 1600 миллионов лет» (Фор, «Основы изотопной геологии»).

Заметим попутно, что, согласно современным представлениям, архейские породы как минимум в два раза древнее – на геохронологической шкале архей заканчивается 2,5 миллиарда лет назад. Получается, что Холмс при составлении своей шкалы ошибся в два раза, то есть на 100 процентов?!. Или наоборот – Холмс был прав, а ошибочны современные представления?..

Любопытно, что в другом (несколько более раннем) источнике можно найти совсем другую информацию о появлении геохронологической шкалы.

«…определения абсолютного возраста, несмотря на их важное значение, долгое время существовали как бы сами по себе, не будучи четко привязанными к делениям шкалы относительной геохронологии, являющейся фундаментом большинства геологических построений. И хотя с первых же шагов своего развития абсолютная геохронология совершенствовалась и непрестанно повышала точность определений возраста, ее выводы не могли быть использованы геологами в должной мере, и стратиграфия (учение о последовательности земных отложений) продолжала держать эту молодую науку на положении падчерицы.

Увязать цифры абсолютного возраста с данными отно­сительной геохронологии оказалось делом нелегким. Для этого потребовалось несколько десятилетий. И только в 1947 году английский исследователь Артур Холмс опубликовал первую общую шкалу геологического возраста.

Для того чтобы создать свою шкалу, Холмс взял за основу пять образцов горных пород, геологическое положе­ние которых было достоверно известно и могло быть соотнесено с определенными подразделениями таблицы относительной геохронологии. Установив абсолютный возраст этих от­ложений, он получил «остов» шкалы абсолютного летоисчисления.

Чтобы восполнить оставшиеся весьма значительные пробелы в сведениях о возрасте остальных периодов, Холмс предположил, что время, необходимое для образования тех или иных отложений, пропорционально их мощности. Чем больше осадков отложилось на протяжении геологического периода, тем дольше он длился. Холмс выбрал наибольшие значения мощностей для каждой геологической системы и распределил временные интервалы по периодам в соответст­вии с этими величинами.

Так был создан своеобразный календарь, в котором рядом с общепринятыми названиями эр и периодов земной истории были указаны возраст отложений и протяженность каждого отрезка времени, выраженные в единицах абсолютного летосчисления – в годах. Новая шкала необыкновенно быстро получила признание геологов всего мира.

Однако не прошло и десяти лет со дня опубликования работы Холмса, как стало совершенно очевидно, что существующие представления о протяженности геологических периодов должны бытьпересмотрены. С учетом новых данных был внесен ряд уточнений и создана геохронологическая шкала, которая существенно отличалась от первоначальной схемы Холмса» (А.Олейников, «Геологические часы»).

Итак, уже в этом описании мы сталкиваемся с предвзятым подходом Холмса, обусловленным теорией Лайэля, требовавшей длительной геологической эволюции. Холмс выбрал именно «наибольшие значения мощностей» для каждой геологической системы – то есть заведомо заранее закладывал максимальное время отдельных периодов. Между тем, как может быть легко понятно из самых простых соображений, наибольшая мощность отложений связана прежде всего с… областями лавинной седиментации (!), где скорость накопления осадков очень сильно отличается от средней (см. ранее). Таким образом, Холмс использовал в основе построения своей шкалы заведомо ошибочный подход, не соответствующий реальности!..

К сожалению, Олейников так и не указал, что это были за «пять образцов горных пород», и на основании чего, собственно, считалось, что их положение на геологической шкале «достоверно известно»…

Мои попытки найти недостающую информацию в каких-то других доступных изданиях оказались безуспешными. В электронном каталоге Ленинской библиотеки работ Холмса не значится. А по запросам в интернетных поисковиках высвечивались лишь предложения англоязычных сайтов заказать книги Холмса в качестве «редкого издания», затем оплатить заказ и дожидаться книг без каких-либо гарантий исполнения заказа…

Оставалось одно – обратиться за помощью к специалистам-профессоналам. Что я и сделал – зарегистрировался на форуме «Все о геологии» (http://forum.we.ru – «Форум для студентов, абитуриентов геологических специальностей и геологов» при Геофаке МГУ), привел цитату из Олейникова, попросил помочь в поиске информации о пяти загадочных образцах и стал ждать…

Но не тут-то было!..

Вместо искомых сведений на меня посыпались вопросы типа «где я это взял» и «зачем мне это нужно». Информации по существу я так и не дождался, хотя терпеливо отвечал на все встречные вопросы. Причем я не дождался не только хоть каких-нибудь данных по «пяти образцам», но и какого-либо опровержения (или подтверждения) сведений, сообщаемых Олейниковым. Все, что я получил – устойчивое ощущение того, что профессиональных геологов – как будущих, так и уже состоявшихся – абсолютно не интересовал (да и продолжает не интересовать) вопрос, а откуда, собственно, реально взялась та геохронологическая шкала, которой все ныне пользуются…

В конце концов с чужой помощью (но не геологов) удалось-таки найти электронный вариант основной книги Холмса по данной тематике «Принципы физической геологии», но и там информация по упоминаемым Олейниковым пяти образцам отсутствовала напрочь…

Наверняка найдется читатель, который пожмет плечами – дескать, зачем мне сдались данные по каким-то пяти образцам?.. Ведь шкала Холмса все равно практически сразу подверглась сомнениям и уточнениям. Мало ли что было вчера – важно что сегодня. Сегодня «все уже выверено и перепроверено», а над «окончательной» шлифовкой шкалы трудится целая армия авторитетных ученых. И вообще:

«Непрестанно улучшаются методы геохронометрии, уточня­ются значения периодов полураспада различных радиоактив­ных изотопов, и все более совершенной становится шкала абсолютного геологического возраста Земли» (А.Олейников, «Геологические часы»).

Проблема в том, что в самом подходе к построению геохронологической шкалы кроется весьма тонкий момент – она «дополняется и уточняется» исключительно на базе «уже достигнутого»!.. А это создает очень сильные предпосылки к тому, что ошибки, попавшие по каким-либо причинам в «начальную» шкалу (а точнее: заложенные в самую ее основу), так и будут в ней оставаться. Но что еще хуже – при таком принципе построения шкалы ошибки способны не столько обнаруживаться и устраняться, сколько обрастать «подтверждениями истинности». Так что как ни крути, а к истокам спускаться надо!..

Тем более, если вспомнить, что одной из самых первых стратиграфических шкал (а стратиграфические шкалы – самая что ни на есть базовая основа геохронологической шкалы) была шкала Смита, созданная им для… каменноугольного периода! Периода, которого, как теперь выясняется, просто не было!..

Более того, именно «каменноугольный период» (из-за его весьма характерных признаков в виде отложений угля) во все времена с момента Смита, считался несомненным (пусть его протяженность и границы и менялись). Следовательно, вполне логично предположить, что какие-то из образцов, использованных Холмсом, также могли относиться к не существовавшему в реальности «каменноугольному периоду». И пусть построенная им шкала тут же стала «уточняться и пересматриваться», но ведь нет никаких гарантий того, что образцы пород из того же «каменноугольного периода» не служили дли «уточнения и пересмотра» шкалы Холмса в более позднее время. А ведь помимо «каменноугольных» отложений есть еще и отложения солей, которые также могли попасть в число тех самых «опорных столбов», послуживших частью «остова» геохронологической шкалы.

Представляется более чем вероятным, что в процессе «уточнения и пересмотра» никто не будет выдергивать из остова опорные столбы. И в таких условиях вполне возможно, что ошибки, связанные с этим, могли дойти и до современного момента. А если опорные столбы установлены неправильно, то что можно сказать о качестве всей конструкции?.. Естественно, ничего хорошего…

Но в конце концов, необходимых данных у нас все-таки нет. И поэтому допустим (просто хотя бы исходя из принципа презумпции невиновности), что ошибок в опорных столбах нет – все они взяты «правильно», то есть из числа тех пород, которые не должны выпасть из «достоверно установленных на геологической шкале» при переходе к новой концепции расширяющейся Земли и ее гидридного ядра.

Посмотрим, нет ли где еще возможных ошибок.

Для этого нам придется обратиться к методологии изотопного датирования геологических пород.

* * *

В датировании геологических пород наиболее часто используются следующие пары материнских и дочерних изотопов:




238U – 206Pb

87Rb – 87Sr

235U – 207Pb

147Sm – 144Nd

232Th – 208Pb

187Re – 187Os

40K – 40Ar

176Lu – 176Hf


Табл. 5. Пары материнских и дочерних изотопов
Процесс радиоактивного распада, как ныне считается, является независящим от окружающих условий и характеризуется так называемым периодом полураспада Т1/2 – временем, за которое распадается половина атомов исходного (материнского) изотопа. Хотя в практике датирования чаще используется другой параметр – , который связан с периодом полураспада простым соотношением: .Т1/2 = ln2.

Для замкнутой системы, в которой в некий начальный момент времени был только материнский изотоп, из законов радиоактивного распада следует, что количество атомов дочернего изотопа D, образовавшегося за некое время t, прошедшее с этого начального момента, связано с количеством атомов оставшегося материнского изотопа М следующим соотношением:

D = M (eλt – 1)

Откуда легко определяется время, прошедшее с начального момента – момента образования такой замкнутой системы:



Это соотношение может быть использовано для определения возраста какого-либо минерала t при соблюдении двух весьма важных условий.

Во-первых, в течение всей своей истории система должна быть замкнутой – в минерале не должно происходить ни выноса, ни привноса как дочерних, так и материнских изотопов.

А во-вторых, в момент своего образования (например, при кристаллизации) минерал не должен содержать атомов дочернего изотопа.

Это очень жесткие условия, которые в реальности, мягко говоря, далеко не всегда соблюдаются…

Попытки минимизировать возможные ошибки, связанные с нарушением первого условия, сводятся главным образом к использованию для определения абсолютного возраста лишь ограниченной группы минералов – тех, которые, по современным представлениям, считаются в достаточной мере «консервативными» (если так можно выразиться), то есть минералов, которые сохраняют свой состав неизменным, несмотря на потенциально возможные в прошлом внешние воздействия.

Поскольку второе условие соблюдается крайне редко, для минимизации ошибок, связанных с его нарушением, часто применяют метод изохрон, в котором используется тот факт, что помимо радиогенного (получившегося в результате радиоактивного распада) изотопа в минерале практически всегда присутствует какое-то количество стабильного изотопа того же химического элемента.

Если система замкнута (то есть первое условие выполняется), то количество стабильного изотопа со временем не меняется, что ясно из вполне элементарных соображений.

Пусть количество стабильного изотопа равно D2, а радиогенного D1. Допустим, что в самый начальный момент времени в минерал попало некоторое количество дочернего изотопа (D1)0. Тогда для текущего содержания дочернего и материнского изотопов будет справедливо соотношение:
D1/ D2 = (D1/ D2)0 + M/D2 (eλt - 1)
Изохроной называется прямая линия, проведенная в координатах D1/D2 и M/D2 по точкам изотопных составов одновозрастных минералов, различающихся по содержанию материнского элемента М (Рис. 143). Эта прямая, как очевидно, пересекает ось ординат в точке, соответствующей составу захваченного при кристаллизации элемента (D1/D2)0. Угол наклона прямой α будет функцией возраста минерала. Таким образом, метод изохрон позволяет по нескольким образцам, имеющим общее происхождение, определить возраст минерала и начальное изотопное отношение дочернего элемента в нем. Если же образцы имеют неодинаковый возраст, точки их изотопных составов не ложатся на одну прямую…



Рис. 143.Изохрона

Для широко распространенного уран-торий-свинцового метода проходят еще несколько дальше, поскольку в нем задействовано сразу несколько процессов распада.

Первичные изотопы урана и тория 238U, 235U и 232Th в процессе радиоактивных превращений образуют длинные цепочки переходящих друг в друга изотопов – радиоактивные ряды распада. Конечными продуктами распада всех трех рядов являются изотопы свинца. Поскольку геология работает с довольно продолжительными интервалами времени, сравнительно короткоживущими промежуточными членами рядов можно пренебречь и рассматривать упрощенные системы: 238U – 206Pb, 235U – 207Pb и 232Th – 208Pb.


Рис. 144.Цепочка распада 235U

Основные параметры этих систем следующие:




Материнский нуклид

Период полураспада, годы

Константа распада , годы

Дочерний нуклид

238U

4,468 · 109

1,55125 · 10-10

206Pb

235U

0,7038 · 109

9,8485 · 10-10

207Pb

232Th

1,4008 · 1010

4,9475 · 10-11

208Pb


Табл. 6.Параметры уран-ториевых систем
Отношение 238U/235U, как считается, постоянно и равно 137,88 (за исключением урановых руд Окло). Поэтому изотопный анализ урана заменяют определением его общего содержания. Помимо радиогенных изотопов 206Рb, 207Рb и 208Рb в природе существует еще один стабильный изотоп свинца – 204Рb. Концентрация 204Рb не меняется во времени, и его считают нерадиогенным (то есть не образующимся в результате реакций радиоактивного распада в данном случае урана и тория).

Тогда для каждой из вышеприведенных систем можно записать уравнение изохроны:


206Pb/204Pb = (206Pb/204Pb)0 + 238U/204Pb (eλ238t – 1 )

207Pb/204Pb = (207Pb/204Pb)0 + 235U/204Pb (eλ235t – 1)

208Pb/204Pb = (208Pb/204Pb)0 + 232Th/204Pb (eλ232t – 1)
Если первые два уравнения разделить друг на друга, можно получить (при некоторых условиях, на которых мы остановимся чуть позднее) соотношения, которые используются в так называемом свинцово-свинцовом методе датирования:

где (207Pb/ 206Pb)rad – отношение радиогенного207Рb к радиогенному 206Рb.

На практике для расчета возраста по последнему соотношению пользуются специальными таблицами.

Так как основным условием пригодности образцов для определения возраста является закрытость системы, то для U-Th-Рb-метода обычно применяют минералы, максимально устойчивые к воздействию внешних процессов: цирконы, сфены, монациты, ортиты, ураниниты и др. В настоящее время считается, что наиболее достоверные данные дает анализ цирконов.

В принципе, если система оставалась закрытой все время существования минерала, значения возраста, полученные по всем четырем вышеприведенным уравнениям (для разных изотопов свинца), должны быть одинаковыми (конкордантными). Однако, как правило, даже по цирконам они не согласуются (дискордантны). В случае дискордантности нельзя получить достоверные значения возраста по единичному минералу, даже используя считаемую наиболее надежной систему 207Рb/206Рb. Обычно исследуют серию имеющих одинаковое происхождение (когенетичных) минералов для построения изохрон, а дальнейшую интерпретацию полученных данных выполняют с применением различных графических методов.

Например, если урансодержащий минерал в течение своего существования не испытывал ни привноса, ни выноса U и Рb, то значения возраста, определенные по отношениям 207Рb/235U и 206Pb/238U, должны совпадать. На диаграмме в координатах 207Pb/235U – 206Pb/238U точки для таких возрастов лягут на единую кривую, которая называется конкордией (см. Рис. 145).




Рис. 145.Конкордия и дискордия

Конкордия – это геометрическое место точек всех согласующихся U-Pb-систем. Если минерал испытал потерю свинца или привнос урана, то точка будет располагаться на диаграмме ниже конкордии (точка В). Если произошел обратный процесс, точки располагаются выше конкордии (точка С), что происходит значительно реже. Если процесс перераспределения элементов в одновозрастной U-Рb-системе произошел однократно, то точки для когенетичных (имеющих общее происхождение) минералов расположатся на прямой, которая носит название дискордия. Верхняя точка А пересечения конкордии и дискордии дает, как считается, истинный возраст минералов, нижняя точка D пересечения указывает на время метаморфизма (преобразования состава и/или структуры минералов), приведшего к перераспределению элементов…

Вот такова вкратце теория в основе радиоизотопных методов датирования минералов. В учебниках, конечно, приводится существенно больше формул для разных пар материнских и дочерних изотопов, но нам этого будет вполне достаточно…

Однако теория – это теория, и только в ней все выглядит просто и гладко. А реальная практика – совсем другое…

* * *

Реальные проблемы изотопного датирования



Обратимся опять к креационистам.

Одной из довольно часто выдвигаемых ими претензий к существующей практике абсолютного датирования пород является обвинение оппонентов в «выборочном подходе» к получаемым в ходе измерений результатам. Этот «выборочный подход» заключается в том, что те результаты, которые не укладываются в принятую геохронологическую шкалу, объявляются ошибочными и отбрасываются, а признаются лишь те измерения, которые «подтверждают» геохронологическую шкалу.

Увы. Имея некоторый опыт экспериментальных исследований, а также периодически сталкиваясь с анализом различных эмпирических данных, вынужден признать – подобное действительно имеет место. Впрочем, этим грешит не только геология…

И не только этим. Порой дело доходит и до откровенных подтасовок.

«Иногда же происходят случаи вообще ну просто анекдотичные. Например, проф. Розанов А.Ю. рассказал такую занятную историю, произошедшую лично с ним. Он в 50-60-х годах занимался изучением кембрийских отложений Восточной Сибири. Привез он как-то в Москву образцы пород для определения их абсолютного возраста. Отдал их в лабораторию. Причем образцы, как это принято среди геологов (и это, конечно же, разумно), отбираются на обнажениях последовательно, один за другим – иногда они отбираются через определенные интервалы (как правило, снизу-вверх), иногда только в особенно значимых слоях. Ну так вот. Через некоторое время он пришел за результатами и вот, специалист по методам абсолютной геохронологии радостно отрапортовал Алексею Юрьевичу, что он все точно подсчитал, и как все славно получилось. И затем отдал Розанову список с полученными цифрами, где для каждого отобранного последовательно образца соответствовала цифра абсолютного возраста, причем, что самое интересное, значения этих отнюдь не колебались хаотично и бессистемно, а строго убывали с каждым последующим образцом, то есть, чем выше номер образца, тем, соответственно, ниже его абсолютный возраст (тем он моложе, короче говоря). Очень славная получилась картинка. Розанов посмотрел результаты и заметил: «Ты знаешь, брат! А я, вообще-то, образцы-то отбирал в обратной последовательности...» То бишь, не снизу-вверх (от более древних пород к более молодым), как это обычно делают, а наоборот, от более молодых к более древним – но сказать об этом сотрудникам лаборатории Алексей Юрьевич то ли забыл, то ли не захотел. «Да-а?! – сказал спец-радиометрист, конечно, малость опешимши... впрочем, ненадолго – ну ничего, я пересчитаю». И что вы думаете?! Пересчитал, конечно. И на сей раз уж он не промахнулся... Все получилось как надо, как положено» (С.Шубин, «Скорость накопления осадочных отложений по данным палеонтологии»).

И в этом не вижу чего-то невероятного...

Увы, реалии нашей жизни таковы, что подобные субъективные искажения и даже откровенные подтасовки практически «неистребимы», и грешат ими не только представители «генеральной линии науки», но и те же креационисты. Другое дело, что никто никогда не подсчитывал, насколько велика доля таких искажений и подтасовок в общем массиве эмпирических данных, а строить обобщающие заключения на основе отдельных конкретных примеров – значит, еще более удаляться от объективного анализа...

* * *


Гораздо более серьезные негативные последствия, на мой взгляд, влечет за собой сложившаяся в последнее время тенденция своеобразного сокрытия эмпирических данных, которая заключается в следующем.

При публикации результатов экспериментальных исследований все чаще реальные эмпирические данные – экспериментальные точки – заменяются сглаженными аппроксимирующими кривыми, а вместо действительных погрешностей измерений указывается лишь математически вычисляемая (нередко даже без какой-либо связи с реальными погрешностями!) величина отклонения типа «1-сигма» или «2-сигма». В результате остается лишь «красивое подтверждение» выводов авторов исследований, а действительные экспериментальные данные, на основании которых другой исследователь порой мог бы получить совсем иные выводы, оказываются недоступными.

Для того, чтобы пояснить, к чему это приводит, воспользуюсь статьей 2010 года – А.В.Соловьев, М.А.Рогов, «Первые трековые датировки цирконов из мезозойских комплексов полуострова Крым». Хотя данная статья посвящена вовсе не «стандартному» радиоизотопному методу, а авторы приводят не только сглаженные кривые, но и экспериментальные данные, она весьма показательна именно в качестве иллюстрации к вышесказанному.

В этой статье, например, авторы пишут:

«Возраст зерен во всех образцах распределен в широком интервале, что позволяет предполагать присутствие нескольких разновозрастных популяций циркона. В большинстве образцов присутствует две популяции цирконов».

Возьмем один из приводимых в статье графиков (Рис. 146), на котором представлены результаты измерений и расчетов для группы образцов. Реальные результаты измерений показаны столбиками, гладкие кривые – итог расчетов по стандартизированной программе. В левой части графика указаны итоговые «датировки» двух популяций цирконов, с указанием «1σ–погрешности». Рассчитанные кривые, как можно видеть, «замечательно подтверждают» как вывод авторов о двух популяциях исследованных цирконов, так и их «датировки».





Рис. 146.Экспериментальные и расчетные данные по датировке зерен циркона

Но что можно увидеть в реальных экспериментальных данных (которые, к счастью, авторы все-таки привели), если посмотреть на них взглядом, «не замутненным» модными ныне усредняющими расчетами по стандартизированным программам?..

Эти данные указывают на то, что наличие двух популяций – всего лишь одна из множества возможных интерпретаций. Их можно интерпретировать и совершенно иначе. Можно, скажем, констатировать лишь действительно очень широкий разброс данных – от сотни с небольшим до аж восьмисот миллионов лет!.. А вот наличие двух популяций вовсе не очевидно!.. Строго говоря, оно введено авторами сугубо «от лукавого». А может, программа расчетов стандартизирована именно на две (а не одну, три или четыре) популяции…

Если же интерпретировать все данные как единую популяцию, то возраст образцов оказывается совершенно иным – где-то в диапазоне от 100 до 800 млн. лет (скажем, 250-300 млн. лет) с погрешностью вовсе не в десятки миллионов, а в несколько сотен миллионов лет!..

Не будь в статье экспериментальных данных, и приведены были бы лишь сглаженные кривые, как бы можно было узнать о таком варианте трактовки измерений?..

Да никак!.. Разве что благодаря личному знакомству с авторами…

Я не буду утверждать, что авторы статьи не правы, и что верна совсем иная трактовка. В мои задачи это вовсе не входит. Цель совершенно иная – лишь продемонстрировать наличие возможности совершенно разной интерпретации одних и тех же экспериментальных данных. И то, что современная тенденция к публикации только сглаженных результатов и однозначных выводов (широко практикуемая в том числе и в статьях по радиоизотопному определению возраста геологических образцов) является просто вольным или невольным сокрытием эмпирических данных и серьезнейшим искажением реальности.

* * *


Один из излюбленных «аргументов» креационистов в споре против оппонентов – так называемое радиоизотопное «датирование» молодых пород, время формирования которых известно.

«Геологи-креационисты опробовали породы, возраст образования которых доподлинно известен. В результате этого по данным радиоизотопного датирования возраст дацитов лавового купола вулкана Сан-Хелен (извержение 1986 года) [гора Святой Елены, США] получился равным 0,34–2,8 млн. лет… а современных лав Новой Зеландии в 1–3,5 млн. лет» (А.Лаломов, «Геологический возраст Земли в свете современного катастрофизма: реальна ли макроэволюция с точки зрения современной геологии?»).





Рис. 147.Исследование лавового купола Святой Елены (США)

Буквально смакуя детали подобных примеров, креационисты «торжествуют свою победу», предъявляя, как они считают, «доказательства несостоятельности» методов радиоизотопного датирования в принципе…

Каким бы парадоксальным это не казалось, но виноваты в подобном «торжестве креационистов» прежде всего сами сторонники радиоизотопных методов, которые, преследуя те или иные цели, искусственно и совершенно неправомерно завышают декларируемую точность этих методов. В том числе и заменяя реальную погрешность сглаженными расчетами (как указывалось чуть ранее).

Посмотрим, например, на колонку с цифрами в геохронологической шкале (см.Рис. 6на стр. 12) – указанная там погрешность практически везде меньше процента. И если не вдаваться в детали, то такая точность способна вызвать лишь сильнейшее уважение к тем, кто смог ее обеспечить в столь непростом деле.

Однако, с другой стороны, если бы такая точность радиоизотопных методов имела бы место в реальности, то аргументы креационистов по «датированию» молодых пород должны были стать убийственными для самой методики.

Но взглянем, скажем, на данные (Sun,1980), которые приводятся по соотношениям изотопов свинца для вулканических пород океанических островов в целом ряде учебников по геологии (Рис. 148). Из диаграмм легко увидеть, что для одних и тех же полей вулканических пород разброс отношений изотопов свинца 207Pb/204Pb составляет порядка процента, для 208Pb/204Pb достигает уже трех процентов, а по 206Pb/204Pb – всех пяти процентов. Это – реальный естественный разброс отношений изотопов, наблюдаемый в природе. И это то, что задает неустранимую погрешность измерений!.. Причем самую нижнюю ее границу, поскольку любые манипуляции с образцами, любые измерения будут только увеличивать эту погрешность, но никак не уменьшать ее. Вдобавок, если при определении возраста используется формула, где задействованы сразу несколько радиогенных изотопов (как, например, в свинцово-свинцовом методе), то неустранимые погрешности по каждому из изотопов будут только суммироваться, увеличивая общую погрешность (опять же неустранимую!).





Рис. 148.Соотношения изотопов свинца для вулканических пород океанических островов

А что означает разброс всего в один процент даже для 207Pb, образуемого в результате радиоактивного распада «самого недолговечного из свинец-образующих» 235U, имеющего период полураспада около 700 млн. лет?.. Этот разброс соответствует погрешности в полтора десятка миллиона лет!.. Соответственно, по другим изотопам – с еще большим исходным разбросом и большим периодом полураспада – погрешность будет существенно больше. Так что ничего удивительного в получении «возраста» в миллионы лет для современных лав нет.

Впрочем, как нет в этом и каких-либо «доказательств» заведомой непригодности метода радиоизотопного датирования. Есть лишь абсолютно некорректная трактовка креационистами эмпирических данных.

Дело в том, что имеется нерушимое правило экспериментальных исследований – измеряемые величины должны превышать значения погрешности измерений. Только тогда их можно считать хоть сколь-нибудь «достоверными» и вообще измеренными.

Отсюда автоматически вытекает, что датирование геологических пород может быть допустимо в принципе только при условии их возраста в десятки миллионов лет и более. Все остальное – это не датирование, а фикция!.. Это могут быть лишь измерения естественных вариаций изотопов, но не более того!.. Получение каких-либо «датировок» на основе таких измерений – лишь демонстрация полной безграмотности в самой сути эмпирических исследований.

Другое дело, что наблюдаемый разброс содержания изотопов в реальных лавах совершенно явно указывает на то, что декларируемая точность определения возраста – тоже сплошная фикция. Реальная погрешность измерений не может быть никоим образом меньше величины неустранимых погрешностей, которые по технологии вычисления всяких «1-сигма» и «2-сигма» погрешностей вообще никак не учитываются!..

Так что необходимо ставить под очень серьезное сомнение не только невообразимо высокую точность «золотых гвоздей» в правой колонке геохронологической шкалы, но и вообще заявляемые датировки конкретных пород.

Впрочем, на это указывает и довольно скептическое отношение многих из числа самих геологов к радиоизотопным методам датирования, которые на практике предпочитают ориентироваться все-таки на палеонтолого-стратиграфические данные.

Однако и эти данные, как было показано ранее, далеко не безгрешны. А в рамках того подхода, в котором требуется учет существенного изменения геологических условий в прошлом, эти данные вообще требуют пересмотра. Так что волей-неволей все равно придется возвращаться к радиоизотопным методам, остающимся в этих условиях вообще единственным способом определения абсолютного возраста пород хоть с какой-то точностью. Но точностью явно существенно ниже, чем декларируется…

* * *


В любом экспериментальном исследовании мало чего-то измерить. Это – даже не полдела, а в лучшем случае его десятая часть. Гораздо важнее адекватно проинтерпретировать полученные результаты измерений. Говоря другими словами, надо еще понять, что именно наизмеряли. А вот тут уже значительную роль начинают играть субъективные установки исследователя – его предпочтения тех или иных теорий и гипотез.

Возьмем для примера, на мой взгляд, весьма показательную и информативную статью «История юной Земли», написанную Джоном Вэлли (JohnW.Valley) из Мичиганского университета в Анн-Арборе.

Вэлли – президент Американского минералогического общества, профессор геологии в Висконсинском университете в Мадисоне, который основал лабораторию WiscSIMS для исследования образцов древних горных пород, оснащенную новейшим оборудованием, в том числе и ионным микроскопом повышенной чувствительности для исследования микрокристаллов циркона, считающегося одним из наиболее подходящих минералов для определения абсолютного возраста пород уран-свинцовым методом.

Вот, что сам Вэлли пишет об используемой технологии:

«Определение возраста кристаллов стало возможным в начале 80-х гг. ХХ в., когда Вильям Компстон (WilliamCompston) со своими коллегами из Австралийского национального университета в Канберре создал специальный ионный микрозонд SHRIMP (SensitiveHigh-ResolutionIonMicroprobe – чувствительный ионный микрозонд с высокой разрешающей способностью). Несмотря на то, что большинство кристаллов циркона практически невидимы невооруженным глазом, ионный микрозонд столь точно посылает сфокусированный пучок ионов, что тот может выбить небольшое количество атомов с любой заданной части поверхности циркона. Затем масс-спектрометром определяется состав атомов путем сравнения их масс» (Дж.Вэлли, «История юной Земли»).

О сложности процедуры подготовки и проведения таких измерений можно судить (хотя бы косвенно) по иллюстрации, приводимой в статье – см. Рис. 149.





Рис. 149. Иллюстрация к датированию циркона

Комментарий к этой иллюстрации гласит:

«Существует пять основных ступеней анализа циркона. Сначала исследователи заливают кристалл в эпоксидной смоле, затем шлифуют и полируют его. Узкий пучок ионов микрозонда выбивает с очищенной поверхности небольшое число атомов, которые идентифицируются по сравнительной массе.

Чтобы определить возраст кристалла, ученые проводят измерения атомов урана и свинца, включенных в структуру молекулы циркона. Поскольку свинец – конечный продукт радиоактивного распада урана, то чем больше его содержание в кристалле по отношению к урану, тем старше циркон.

С помощью сканирующего электронного микроскопа определяется структура растущего экземпляра и любые мельчайшие фрагменты минералов, включенных в процессе роста. Включения кварца, например, чаще всего встречаются в цирконах, образованных в гранитах, типичных для континентальной коры.

В то же самое место, что и в первый раз, направляется микрозонд для измерения атомов кислорода, входящих в состав циркона. Определенное отношение изотопов кислорода, атомов различной массы, показывает, в прохладных или в жарких условиях формировалась материнская порода кристалла.

Исследователи в третий раз используют ионный пучок микрозонда, чтобы определить микропримеси, составляющие менее 1% в молекулярном строении кристалла. Некоторые из этих рассеянных элементов могут свидетельствовать о принадлежности материнской породы кристалла древнему континенту» (там же).

И вот эта весьма непростая (и естественно очень дорогостоящая) техника со столь же непростой технологией были использованы для датирования микрозерен циркона из пустынного местечка Джек-Хиллз в Австралии.

Как это часто бывает, авторы исследования получили дискордию (см. Рис. 150), на основании которой был сделан вывод, что кристаллы циркона образовались 4,4 миллиарда лет назад, но подверглись некогда в прошлом дополнительному температурному воздействию, что и привело к появлению дискордантности данных, полученных в ходе измерений. Все в полном соответствии с теорией, излагаемой в учебниках по радиоизотопному датированию.



Рис. 150. Дискордия при датировке цирконов Джек-Хиллз

Естественно, что у читателя прежде всего возникает уважительно-почтительное отношение к результатам столь внушительной и скрупулезной работы, проведенной с применением столь сложной техники и методики. Однако это лишь в том случае, если не вглядываться в детали…

А вот мы возьмем, да и присмотримся повнимательней к некоторым из них. Особенно к тем, которые имеют непосредственное отношение не только к выбору объекта исследования, но и к трактовке получаемых результатов.

Так например, в статье можно найти ответ на вопрос, почему геологи предпочитают иметь дело с цирконами, и почему цирконы были выбраны и в данном случае.

«Извлеченные из основной породы отдельные кристаллы могли быть датированы, так как циркон – прекрасный счетчик времени. Помимо свойства долговечности его кристаллы имеют в микроколичестве радиоактивный уран, распадающийся с определенной скоростью до свинца. Когда циркон образуется в затвердевающей магме, атомы циркония, кремния и кислорода соединяются в определенной пропорции (ZrSiO4), создавая уникальную структуру, где уран может участвовать только как примесь. Атомы свинца слишком велики, чтобы заменить элементы в кристаллической решетке, поэтому образующиеся кристаллы циркона свободны от свинца. Часы уран-свинец начинают свой отсчет, как только рождаются кристаллы циркона. Таким образом, отношение свинца к урану растет по мере старения кристалла. Ученые могут достоверно определить возраст нетронутого циркона с точностью до 1%, что для юной Земли означает примерно 40 млн. лет» (там же).

Ну что ж… Проверим.

Размеры атомов, составляющих циркон ZrSiO4: цирконий Zr – 160 пм (пикометр = 10–12 метра или 10–10 сантиметра); кремний Si – 132 пм. Уран U – 138 пм. Свинец – 175 пм. Вроде бы утверждение автора статьи, что свинец «слишком большой» для попадания в кристаллы циркона на стадии его формирования соответствует действительности. А следовательно, и правда, свинца в кристалле в момент его образования быть не должно. Посему и весь найденный при измерениях в цирконе свинец должен являться продуктами распада урана, образовавшимися исключительно за время жизни кристалла…

Однако буквально чуть ниже в той же статье можно прочитать следующий любопытный абзац:

«…дополнительная информация о континентальной коре была получена при исследовании рассеянных элементов. Чтобы все это выяснить, надо было пристальнее всмотреться вглубь кристаллов. Цирконы из Джек-Хиллз имеют повышенные концентрации микропримесей, а также включения европия и церия, которые обычно образуются во время кристаллизации земной коры; это означает, что цирконы зародились скорее у поверхности Земли, а не в мантии. Более того, соотношение радиоактивных изотопов неодима и гафния, двух элементов, относящихся ко времени формирования континентальной коры, дает основание полагать, что большая часть земной коры образовалась 4,4 млрд. лет назад» (там же).

Заглядываем вновь в справочник по размерам атомов различных химических элементов. И что же мы видим?..

Европий Eu – 199 пм, церий Се – 181 пм, неодим Nd – 182 пм, гафний Hf – 167 пм. Из четырех упомянутых в приведенной цитате элементов у трех радиусы атомов больше, чем у свинца!.. Однако они все-таки попали в кристаллы циркона в качестве примеси!..

Возникает закономерный вопрос: тогда какие у нас есть основания считать, что туда также в качестве примеси не мог попасть и свинец?!. Ответ прост: оснований нет никаких!..

Мог свинец попасть в кристалл циркона в момент образования кристалла (то есть в момент извержения и застывания породы)?.. Мог. Наличие других примесей показывает, что ничего этому не мешает.

Мог среди примесей свинца оказаться и радиогенный изотоп, образовавшийся в ходе распада урана еще до формирования кристалла циркона?.. Мог. Реакции распада идут и в мантии. Это достаточно очевидно.

И это косвенно, между прочим, подтверждает дискондартность результатов измерений, которая вполне может быть вовсе не результатом какой-то дальнейшей «переплавки» кристалла (или хотя бы просто сильного температурного воздействия, сопровождавшегося изменением изотопного состава), а всего лишь банальным следствием различной концентрации радиогенного свинца в разных местах кристалла циркона в момент его образования.

Могла ли часть этого радиогенного изотопа свинца, попавшего в итоге в кристалл циркона, образоваться еще даже до формирования Земли как планеты?.. Могла. Этому тоже ничего не мешает, поскольку распад урана происходит и в космических условиях…

Тогда что же на самом деле наизмеряли авторы статьи?.. Какой такой «возраст»?..

И имеет ли полученный ими результат хоть какое-то отношение к возрасту породы в частности, и планеты Земля в целом?..

Строго говоря, не имеет. Полученное значение в 4,4 миллиарда лет может означать лишь одно – оно некоим (пока еще вовсе не понятным) образом соотносится со временем образования исходных атомов урана.

* * *


Вернемся к уравнениям, использованным в методике свинец-свинцового метода радиоизотопного датирования. В результате деления соотношений для двух изотопов свинца друг на друга были получены следующие соотношения:

Переход от первого уравнения ко второму возможен вообще-то лишь в двух случаях.

Вариант первый: начальное содержание изотопов свинца 207Pb и 206Pb равно нулю.

Как заявляют сами геологи, подобное условие выполняет крайне редко. И как можно было убедиться на примере статьи по датированию цирконов Джек-Хиллз, даже для кристаллов этого минерала нет никаких оснований полагать нулевым начальное содержание изотопов свинца.

Если же не учитывать наличие радиогенных изотопов свинца с самого начала существования минерала, то при определении его возраста получается, как легко понять, автоматическое «удревнение» образца (по сравнению с истинным его возрастом).

Вариант второй: начальное содержание изотопов свинца в исследуемом минерале не равно нулю, а под выражением (207Pb/206Pb)rad во втором уравнении подразумевается вся громоздкая левая часть предыдущего уравнения.

Но тогда в это выражение «зашито» сразу две заведомо неизвестные величины (207Pb/204Pb)0 и (206Pb/204Pb)0, связанные с начальным содержанием разных изотопов свинца. Получаем одно уравнение аж с тремя неизвестными (третье неизвестное – искомый возраст образца). Как известно из математики, решений у такого уравнения может быть бесконечно много. Что же делать?..

Можно, конечно, с помощью изохрон по 207Pb и 206Pb определить недостающие два неизвестных – начальные содержания этих изотопов в исследуемом образце. Но это – вычисление со всеми вытекающими отсюда последствиями и погрешностями. Если учесть неустранимые погрешности, связанные с естественным разбросом содержания изотопов, хотя бы (для грубых оценок) на основе ранее рассмотренных данных, то мы уже получим: погрешность по 207Pb (порядка процента) + погрешность 206Pb (около пяти процентов) + погрешность измерений в текущем содержании 207Pb и 206Pb (по каждому отдельно!) + погрешность вычислений (определение точек пересечения изохрон с осью ординат тоже имеет определенную погрешность). Думаю, вполне смело можно оценить итоговую погрешность примерно в десяток процентов (и это будет еще весьма оптимистичным). А такая погрешность для наиболее древних пород уже дает разброс в почти полмиллиарда лет!..

И это – еще куда ни шло...

Дело в том, что для определения возраста свинцово-содержащих руд нередко используют очень сильно все «упрощающий», но довольно-таки странный ход – начальное содержание изотопов свинца даже не вычисляется, а просто принимается равным его неким «начальным соотношениям в протопланетном облаке».

«Здесь используется метод так называемого обыкновенного свинца, т.е. свинца, изотопный состав которого соответствовал первичной гомогенной Земле Т лет тому назад. Резервуар, в котором были равномерно распределены U, Th и Рb, существовал вскоре после образования Земли. Дифференциация мантии постепенно приводила к появлению новых резервуаров и неоднородностей в распределении U/Pb и Th/Pb. В результате радиоактивного распада U и Th к первичному свинцу добавлялось со временем все возраставшее количество радиогенных изотопов 206Рb, 107Рb и 208Рb. При этом большему содержанию радиоактивных элементов во вторичных резервуарах соответствовала большая добавка радиогенного свинца».

И вот самый странный ключевой момент:

«Изотопный состав первичного свинца был определен по метеоритному веществу, практически свободному от U и Th, исходя из допущения совместного происхождения метеоритов и Солнечной системы. В настоящее время в качестве первичного принят изотопный состав троилита из метеорита Каньон Дьябло (Tatsumoto, Knight, Allégre, 1973; Неймарк, см.: Геохимия радиогенных изотопов на ранних стадиях эволюции Земли, 1983): (206Pb/ 204Pb)T = a0 = 9,307; (207Pb/ 204Pb)T = b0 = 10,294; (208Pb/ 204Pb)T = c0 = 29,479».

Прежде всего, представляется довольно странной сама логика соотнесения вещества, «практически свободного от урана и тория» с изотопным составом «первичного свинца». Если урана и тория очень мало, то это может быть сразу в двух случаях: в одном – их практически не было в этом веществе изначально, в другом – они уже успели распасться. Но если в первом случае мы действительно можем говорить о неком «первичном» свинце (и то с некоторой натяжкой), то во втором заведомо имеем дело с некоторым количеством радиогенных изотопов свинца!..

Но главная проблема кроется в другом положении, принимаемом, по сути, по умолчанию – в фактическом соотнесении современных метеоритов с первичным веществом Солнечной системы.

А на каком основании, собственно?!.

На самом деле это – всего лишь гипотеза. Причем весьма давняя гипотеза, которая последнее время все больше и больше ставится под сомнение. И вместо нее все чаще высказывается версия, что метеориты представляют из себя осколки планеты (или даже нескольких планет – см. далее).

Между тем, вся эта эволюция взглядов в астрофизике и метеоритике как будто прошла мимо проблем радиоизотопного датирования, где до сих пор метеориты продолжают фигурировать в качестве «строительного материала» Солнечной системы.

А что значит, признать за метеоритами статус не «строительного материала», а осколков развитой планеты?.. Это значит: признать, что на этой планете (и прежде всего – в ее недрах) происходили всевозможные физико-химические превращения различных соединений, что неизбежно сопровождается в том числе и так называемой сепарацией изотопов – то есть перемещением различных изотопов одного и того же элемента из одной области в другую таким образом, что в этих областях изменяются изотопные соотношения. Этот процесс – процесс изотопной сепарации – хорошо известен геологам и геофизикам.

Но из этого автоматически вытекает, что изотопное соотношение изотопов, скажем, того же свинца становится функцией не столько времени, сколько «функцией места» – оно зависит прежде всего от того, где именно внутри бывшей материнской планеты находился тот «кусочек» вещества, который в дальнейшем стал метеоритом. И столь же автоматически вытекает, что у нас нет абсолютно никаких прав соотносить «первичный» свинец с конкретным метеоритом Каньона Дьябло, который к тому же является железным метеоритом, а это – признак того, что он входил в вещество даже не мантии, а ядра исходной «материнской» планеты; вещество, заведомо прошедшее мощнейшую сепарацию в ходе эволюции исходной планеты…

Следовательно, и абсолютно все результаты «датирования» с применением указанной формулы и вышеупомянутых расчетных таблиц требуют не много, ни мало, а полнейшего пересмотра!.. А это – огромное количество исследований, поскольку данная методика – самая распространенная...



Рис. 151.Осколок метеорита Каньона Дьябло

* * *


Ну что?.. Уже не так надежно выглядят результаты абсолютного датирования, подпирающего геохронологическую шкалу гвоздями, забитыми в правую колонку наРис. 6,стр. 12?..

Казавшиеся золотыми гвозди начали серьезно ржаветь…

Конечно, далеко не все результаты получены уран-ториево-свинцовыми методами. Есть и другие изотопы. Например, калий-аргоновый или рубидий-стронциевый методы также широко используются в геологии.

Но и они не лишены недостатков.

Если у свинцовых методов проблема с лишним «начальным» свинцом, то у калий-аргонового метода сложности противоположного характера. Аргон – газ. А обеспечить удержание газа внутри минерала – да еще и на протяжении длительной истории – чрезвычайно сложно. И ни один честный геолог не даст гарантии того, что какой-то конкретный минерал удержал в себе весь радиогенный аргон. Наоборот, тут как с пресловутыми «законами Мэрфи»: если есть возможность утечки, она обязательно будет. А раз аргон мог покинуть минерал, то и результаты датирования калий-аргоновым методом «в лоб» заведомо будут ошибочными.

Рубидий-стронциевый метод вроде бы обходится без газа. Соответственно, и «аргоновых» проблем у него быть не должно. Но и тут есть одна загвоздка:

«Как показали исследования Э.Йегер, даже при сравнительно низких температурах может происходить частичный обмен стронцием между минералами»

А это уже прямая предпосылка к нарушению одного из базовых требований при изотопном датировании минералов – к нарушению условия изолированности системы. Для неизолированной же системы результат измерений может быть вообще каким угодно.

И так далее и тому подобное…

Но даже все вышесказанное о радиоизотопных методах датирования вполне может оказаться «почти ничего не значащими мелочами» по сравнению с теми последствиями, угроза которых нависла над самими основами этих методов в последние годы…

* * *



Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   16




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет