Академия наук СССР дальневосточный научный центр



бет2/17
Дата05.07.2016
өлшемі5.39 Mb.
#178755
түріКнига
1   2   3   4   5   6   7   8   9   ...   17
ФИЛОГЕНЕЗ
Сущность филогенетического метода в биостратиграфии, предложенного Ч. Дарвином, заключается в трансформации эволюционных отношений между организмами, сохранившимися в виде биофоссилий, во временные отношения между содержащими эти биофоссилий слоями. Филогенетический метод, таким образом, предполагает реконструкцию филогенеза.

Хотя некоторые эволюционные события мы наблюдаем in statu nascendi, все же история как оборвавшихся, так и дошедших до наших дней эволюционных линий — это продукт реконструкций, основанных на фенетических отношениях и хронологических отношениях. Мы соответственно будем говорить о фенетических рядах — феноклинах и хронологических рядах— хроноклинах. При анализе феноклин временные отношения реконструируются в свете тех или иных филогенетических гипотез. Хроноклины непосредственно отражают временные, но не филогенетические отношения.


Глава 1.

ФЕНОКЛИНЫ


Градационные отношения между организмами и возможность построения рядов форм выявлены Аристотелем и воплощены в его «лестнице существ». П. С. Паллас предложил графическую интерпретацию системы организмов в виде древа (Pallas, 1766). Идея древа, или дендрограммы, заложена в такой широко распространенной форме классификации, как дихотомический определительский ключ.

В середине XVIII в. были предприняты первые попытки истолковать «лестницу существ» как эволюционный ряд. Позднее Ламарк, Дарвин и Геккель, отождествляя историческое развитие организмов с родословным древом, пытались использовать такое древо в качестве классификационной системы — филогенетической классификации. Впоследствии многие исследователи пришли к выводу, что филогенетический процесс мно-


{36}

го сложнее, чем дихотомическое ветвление родословного древа, которое, таким образом, не может служить символом филогении. Так называемые филогении — это подчас не что иное, как изображение дихотомического определительского ключа. Дж. Хаксли писал, что логическая и филогенетическая классификации несовместимы (Huxley, 1942). Это вполне справедливо и для современных компьютерных фенограмм и филограмм, нередко выступающих в роли «филогений». Предложено несколько вариантов построения фенограмм (Sokal, Sneath, 1963; Camin, Sokal, 1965; Fitch, Margoliash, 1967; Colless, 1967, 1971; Felsenstein, 1973, и др.), но все они основаны на логических принципах экономии ветвления и минимальных дистанций между позициями. Сходство с «интуитивными» или «реальными» филогениями не доказывает их адекватности филогенетическому процессу, а свидетельствует лишь о том, что классические схемы следуют той же логике классификации. Иначе говоря, мы имеем здесь совпадение схем, построенных по одному принципу, но различными техническими средствами (Красилов, 1975б).

Исследование фенетических дистанций, само по себе весьма перспективное, к сожалению, выродилось в компьютерную филогенетику. Фенограмма — это размещение таксонов в порядке возрастания коэффициентов сходства по большому числу невзвешенных признаков. Для ее превращения в кладограмму или филограмму используют принцип экономии (исходя из сомнительного предположения, что природа экономна) или отбор «уникальных» признаков, т. е. не связанных с утратой, редукцией, не входящих в функциональные или морфогенетические корреляционные плеяды (Hecht, Edwards, 1976). На практике в категорию «уникальных» попадают просто наименее изученные признаки.

Филогенетический метод — классификация по последовательности ветвления (Hennig, 1950; Brundin, 1972) — дает информационно скудную классификацию, отражающую лишь гипотетическую генеалогию. Ее можно рассматривать как пережиток идеологии стратифицированного общества, в котором генеалогия имела большое значение. По словам А. А. Борисяка (1947), «филогенетическая классификация» является, в сущности, специальной классификацией для определенной цели, тогда как задача естественной или общей классификации — обслуживание многих всевозможных целей».

Эволюционная школа Симпсона–Майра исходит из установки, что любой признак — результат эволюции, что генетические дистанции неадекватны хронологическим и что следует максимизировать одновременно сходство и родственную близость. Однако о родстве чаще всего судят по сходству, так что здесь, по-существу, не два параметра, а один.

Более перспективен анализ признаков и таксонов в свете эволюции экологических ниш и связанных с ними адаптаций


{37}

(Красилов, 1974а). Классификация такого плана могла бы дать представление об экологической структуре биосферы и ее истории — более привлекательная задача, чем реконструкция генеалогии.


МОРФОЛОГИЧЕСКИЕ ПРИЗНАКИ
Аристотель называл функционально эквивалентные органы аналогичными (легкие, жабры, трахеи насекомых). Гёте и Этьен Жоффруа понимали под аналогичными органы, воплощающие общую структурную идею и названные Р. Оуэном (Owen, 1848) гомологичными. (Жоффруа также эпизодически употреблял этот термин: см. Амлинский, 1955.) Ч. Дарвин называл гомологией общность происхождения, принимая в то же время предложенное Э. Рейем Ланкестером разграничение гомогеничных (общего происхождения) и гомопластичных (конвергентно сходных) органов. Дж. Симпсон и многие другие авторы считают гомологичными органы (или признаки), сходные вследствие общности происхождения, в противовес аналогичным, имеющим функциональное сходство. Э. Майр (1971) справедливо указывает, что гомология не предполагает сходства органов, напротив, они могут быть совершенно различными. Различие между гомологией и аналогией, по его мнению, заключается в возможности проследить историю признаков до исходного состояния у общего предка. Некоторые исследователи сохраняют за гомологией смысл, близкий к первоначальному (одинаковое расположение зачатков, топологическое соответствие), называя общность происхождения гомогенней. Это дает возможность объективно определить гомологию, тогда как гомо-гения всегда остается в той или иной степени гипотетичной.

Гомогения легче всего устанавливается в случае прогрессирующей специализации органов — все более совершенного приспособления к выполнению определенной функции и ее интенсификации. Гомология (топологическое соответствие) органов сохраняется, изменения чаще всего сводятся к олигомеризации — сокращению числа повторяющихся (метамерных) органов и дифференциации их размеров. Сокращение числа пальцев у копытных, зубов у специализированных хищников, ветвей у толстоствольных деревьев — наиболее популярные примеры. Явление олигомеризации описал Дарвин и позднее Уиллистон и Догель, с именами которых связывают этот модус морфологической эволюции. В онтогенетическом плане олигомеризация достигается сокращением числа зачатков, уменьшением их размеров и аббревиацией (выпадением конечных стадий) их развития (Северцов, 1939).

Сходство, фальсифицирующее гомогению, возникает вследствие переноса признаков, который можно в общей форме объяснить прогрессирующей интеграцией генетической систе-
{38}

мы за счет расширения сферы плейотропного действия генов. Плодолистики некоторых растений сходны с их же листьями, что наводит на мысль (едва ли верную) о происхождении первых от вторых. И. И. Шмальгаузен считал перенос признаков (в частности, половых) проявлением стабилизации (признак, свойственный одному органу или одному полу, распространяется на весь организм или весь вид). Такие примеры переноса, как развитие рогов у самок северных оленей или уподобление женских половых органов гиены мужским, он объяснял снижением пороговой чувствительности тканей к гормонам в ходе стабилизирующего отбора.

Гомогения маскируется морфологическими преобразованиями, обусловленными сменой органов и сменой функций.

Смена органов (модус Клейненберга) ведет к возникновению аналогичных гомопластичных структур и заключается в переходе функции от одного органа к другому, негомологичному (например, функции осевого скелета от хорды к позвонкам, дыхания от жабер к легким, защиты женского гаметофита и рассеивания зачатков от оболочки мегаспоры к спорангию, покровам семени, завязи, цветоложу). Орган, теряющий функцию, как правило, редуцируется, а воспринимающий ее развивается по пути специализации, приобретая сходство с замещаемым. Так, крылатые плоды сходны с крылатыми семенами (рис. 1). При переходе функции привлечения животных от семян к завязям первые теряют сочные оболочки, а вторые приобретают их.





Рис. 1. Субституция функции: чашечка, окружающая плод Saxifraga (а), преобразована в хохолок семянки сложноцветных (б); субституция органа: плод сложноцветного (в) и семя Strophanthus (Apocynaceas)
Смена функций (модус Дорна) обычно сопровождает переход из одной адаптивной зоны в другую и онтогенетически осуществляется как девиация (резкое изменение предковой программы развития на определенной стадии онтогенеза: Северцов, 1939). Превращение пятипалой конечности в крыло, тычинок — в лепестки, венчика — в хохолок иллюстрирует этот модус. У млекопитающих задние кости нижней челюсти, образующие челюстное сочленение рептилий, частично преобразуются в слуховые косточки. Вторичное нёбо, развитие которого связано с укреплением челюстного аппарата, позднее восприняло важную функцию отделения дыхательного тракта от ротовой полости
{39}

Млечные железы, по-видимому, развились из потовых, предназначенных для увлажнения сумки (Татаринов, 1975). Таким образом, смена функций включает восприятие дополнительной функции (предшествует смене функций) и преадаптацию — изменение назначения приспособлений, связанных с прежней функцией (например, ороговение желудка грызунов в связи с приспособлением к грубой растительной пище явилось преадаптацией к насекомоядности: Воронцов, 1963).

Смена органов и функций часто ведет к нарушению гомологии — изменению места закладки органа и (или) последовательности онтогенетических стадий. Эти процессы Э. -Геккель назвал гетеротопией и гетерохронией. Палеонтологи А. Хайетт и Э. Коп видели основную причину эволюционных преобразований в акцелерации и ретардации — изменении скорости онтогенеза в сочетании с его удлинением или сокращением (пролонгацией и аббревиацией, по современной терминологии). Акцелерация, по Хайетту, сопровождается смещением конечных предковых состояний признаков на все более ранние стадии (Hyatt, 1866). Э. Менерт (Mehnert, 1898) связывал ускорение развития с интенсификацией функций. По его теории, закладка прогрессивно развивающихся органов сдвигается на ранние стадии, а регрессирующих — на поздние. А. Н. Северцов показал, что по крайней мере в отношении редукции конечностей ящериц теория Менерта не точна, так как здесь основное значение имеет не сдвиг на позднюю стадию, а первоначальное уменьшение зачатков и выпадение конечных стадий. Однако в целом он разделял представления Менерта о связи гетерохронии с изменением функционирования органов. Одно из последствий гетерохронии — это совмещение (телескопирование) процессов, принадлежащих различным «эпохам» онтогенеза (модус Маршалла).

Северцов показал, что телескопирование ведет к соединению первоначально независимых элементов в новую более сложную структуру (например, слияние костных чешуи в покровную кость, образование тарсальной кости у ящериц и черепах срастанием проксимальных костей задних конечностей, соединение органов боковой линии, у растений слияние покровов семезачатка между собой и с мегаспорангием, образование шишечной чешуи хвойных срастанием семенной и кроющей чешуи и т. д.; возникновение важнейшего функционального признака цветковых — двойного оплодотворения, по-видимому, связано с телескопированием стадий деления ядер зародышевого мешка, слияния ядер и вхождения спермиев, которые у их предков были разделены во времени).

Телескопирование создает предпосылку для восприятия новой функции двумя или несколькими прежде независимыми органами. Они нередко срастаются, причем следы срастания теряются в онтогенезе (конгенитальное слияние). Такие органы-
{40}

химеры, строго говоря, не гомогеничны ни одному из предковых органов.

Морфоклины гомогеничных органов позволяют определить эволюционную дистанцию между видами. Однако не всегда ясно, в каком направлении «читать» морфологический ряд. Например, цветки можно расположить в ряд от мелких, невзрачных к крупным, с развитым околоцветником. Ботаники школы Энглера считают невзрачные цветки примитивными, тогда как последователи Галлира видят в них вершину эволюции. Так как морфоклины отвечают линиям специализации, то исходным следует считать наименее специализированное состояние. Совокупность исходных позиций по разным морфоклинам составляет архетип — общую идею таксона в понимании Ричарда Оуэна. Дарвин полагал, что архетип — это совокупность неспециализированных предковых признаков («если допустить, что у раннего предшественника — архетипа, иными словами, всех млекопитающих, птиц и рептилий, конечности были построены по существующему общему плану» и т. д.). Выдвинутый Копом «закон неспециализированного» легитимизировал отождествление архетипа с гипотетическим предком («Типы или состояния организмов, наиболее заметные в мировой истории,— ганоиды первичного, динозавры вторичного и мамонты третичного периода — обычно уходят со своим временем. Линия развития идет не от них. Закон анатомии и палеонтологии гласит, что точку отделения типа, которому предназначено доминировать в будущем, следует искать на более низких ступенях развития, среди менее определенных форм, или, выражаясь научным языком, среди обобщенных типов»: Соре, 1887.) Однако реальные предковые формы, в отличие от идеальных архетипов, могли успешно конкурировать с другими организмами лишь благодаря специализации в том или ином направлении. Попытки найти реальный организм, соответствующий идеальному архетипу, заведомо обречены на неудачу. В то же время реальные предки остаются неопознанными из-за их «слишком высокой специализации». В этом одна из причин загадочного исчезновения предковых форм. Например, долгое время игнорировались недвусмысленные указания палеонтологической летописи на происхождение птиц от динозавров.

Закон Копа имеет также несколько иной смысл: предков таксона не следует искать среди современных ему форм. Отождествление рациональной классификации и филогении приводит к довольно распространенной ошибке — сопоставлению таксонов в целом, без учета временных соотношений. Томас Хаксли считал предками млекопитающих амфибий, к которым они ближе по ряду морфологических и физиологических признаков (крупноклетность, кожные железы, кровеносная система и др.), чем к современным рептилиям. Аналогично многие ботаники выводят покрытосеменных из папоротников или даже водорослей.


{41}

В действительности современные рептилии находятся на такой же филогенетической дистанции от триасовых предков, как и млекопитающие, но признаки, сильно изменившиеся в одной линии, оказались консервативными в другой, и наоборот. Таксономические группировки в одних случаях основаны на консервативных, или плезиоморфных признаках (объединение современных рептилий с их ископаемыми предками), в других — на производных, или апоморфных признаках (отделение млекопитающих от симплезиоморфных вымерших групп) и, таким образом, маскируют филогенетические отношения.

Предковые признаки (признаки архетипа), по Дарвину, обладают наибольшей устойчивостью в пределах анализируемой группы и встречаются совместно. Таким образом, наиболее важны устойчивость и коррелированность признаков. Ранее полагали, что «внутренние» признаки более устойчивы, чем «внешние», находящиеся под непосредственным воздействием среды. Эти ламаркистские представления, противоречащие основным постулатам современной теории эволюции, еще полностью не изжиты: кариологические признаки считают более устойчивыми, чем морфологические, что, безусловно, справедливо для отдельных групп, но не как общая закономерность. В действительности устойчивость зависит от ряда обстоятельств, из которых назовем следующие:

1) произвольный выбор дифференцирующих признаков (если группы двустворок различают по строению замка, то этот признак устойчив внутри групп, а скульптура раковины изменчива; группируя по скульптурным признакам, мы получим обратные соотношения);

2) адаптивность; в прошлом многие исследователи усматривали обратную связь между устойчивостью и адаптивным значением признаков; сейчас, однако, становится все более очевидной прямая связь устойчивости со стабилизирующим отбором и, следовательно, адаптивной ценностью;

3) коррелированность; исследование корреляционных плеяд показало, что слабо коррелированные признаки более устойчивы; они, по-видимому, находятся под особой опекой стабилизирующего отбора, ослабляющего корреляцию.

Эти закономерности помогают понять соотношение изменчивости и скорости эволюции. Априорное представление о прямой зависимости между ними (изменчивые структуры более пластичны и, следовательно, быстрее эволюционируют), по-видимому, не подтверждается: изменчивость сочетается с эволюционным консерватизмом, а устойчивость — с высокими темпами эволюции (например, листья растений более изменчивы и в то же время гораздо более консервативны, чем репродуктивные органы). Такой характер связи объясняется тем, что признаки, жестко стабилизированные отбором, при изменении условий отбора изменяются быстрее других (Берг и др., 1973).
{42}

Анализ филетических корреляций опирается на три основных закономерности, установленные сравнительной морфологией расхождение (радиация), параллелизм, и пересечение (гетеробатмия) морфоклин по различным, признакам. Эти закономерности описаны Кювье, который называл корреляцией согласованное изменение функционально связанных органов — конечностей, черепа, зубов и т. д. (биологическая координация, по А. И. Северцову). В координированной системе органов совершенствование одних обычно компенсирует слабую специализацию других. Например, сложное строение желудка сочетается с незначительной специализацией зубов, сильное развитие резцов у роющих грызунов — с относительно слабыми передними конечностями, и наоборот (Воронцов, 1963). Это явление Этьен Жоффруа называл уравновешиванием органов, а последующие авторы — материальной компенсацией или компенсацией функций. Компенсация, долгое время служившая доводом в пользу батмизма — перераспределения силы роста под влиянием упражнения органов,— по-видимому, объясняется отбором определенных аллометрических соотношений между функционально коррелированными органами.

Координации снижают филогенетическую ценность отдельных признаков, принадлежащих одному адаптивному синдрому. Поэтому Дарвин, говоря о совместной встречаемости, имел в виду функционально независимые признаки. Устойчивые сочетания таких признаков (филетические корреляции) нельзя объяснить координацией, они имеют иную основу. Полагают, что филетические корреляции — результат эволюционной инерции стабилизированной отбором части предкового генотипа (Майр, 1971).

Эволюционная инерция особенно отчетлива в некоторых богатых видами группах, где видообразование идет главным образом за счет комбинирования исходного набора признаков. Одно из проявлений эволюционной инерции — неоднократная утрата и появление признака (например, колбочкового аппарата сетчатки глаза: Орлов, 1972). «Утрата» здесь означает переход признака в скрытое (латентное) состояние.

Вместе с тем известны мутации, затрагивающие наиболее фундаментальные морфологические признаки, например мутация «tetraptera» (четыре крыла) у мух, формально исключающая их из отряда двукрылых. Подобные примеры показывают, что устойчивость—не имманентное свойство признаков архетипа. По мнению Симпсона, эволюционной инерцией обладают адаптации, развившиеся в связи с освоением адаптивной зоны. В дальнейшем, при дроблении экологических ниш, они сохраняют свое значение и стабилизируются отбором. Такие адаптации могли независимо возникнуть в различных эволюционных линиях. Действительно, наиболее устойчивые признаки цветковых растений — плодолистики, рыльце, сосуды древесины, листья с
{43}

сетчатым жилкованием и другие,— казалось бы попадающие в категорию филетически коррелированных, появились независимо Друг от друга в различных группах голосеменных (Красилов, 1975а). То же, по-видимому, справедливо в отношении живорождения, теплокровности, волосяного покрова, дифференциации зубного аппарата.





Рис. 2. Долгопят (Tarsius) — «живое ископаемое» по ряду морфологических признаков в эволюционном древе по гемоглобину занимает позицию, близкую к высшим приматам. Длина ветвей древа отвечает числу нуклеотидных замещений

Са — Canis, М — Mus, Ма — Масаса, Се — Сеrcopithecus, Р — Presbytis, Н — Homo, A Ateles, С — Cebus, Т — Tarsius, N — Nycticebus, ОOryctolagus, EEquus (no Beard et al., 1976)


Корреляциям противостоит независимая изменчивость признаков, образующих пересекающиеся морфоклины. Кювье впервые обратил внимание на это явление и использовал его как довод против «лестницы существ» Аристотеля. Впоследствии Долло и Депере рассматривали пересечение морфоклин, или «перекрест специализации» как общее эволюционное правило. В основе его лежит мозаичность эволюции, или гетеробатмия: практически все организмы прогрессивны по одним признакам и примитивны по другим. Например, по относительным размерам мозга лемуры занимают наиболее низкое положение среди приматов, за ними следуют долгопят (рис. 2) и низшие обезьяны. Однако по строению конечностей, зубов, лицевой мускулатуры и языка лемуры более специализированы, чем долгопяты (Minkoff, 1974). Среди высших приматов австралопитеки приближаются к человеку по морфологии черепа и объему мозга, но их конечности имеют архаичные для наземных приматов особенности, связанные с брахиацией (Oxnard, 1973). Можно предположить, что долгопяты наиболее близки к предкам приматов (и, следовательно, что мозг лемуров дегенерировал), а австралопитеки — непосредственные предки человека, у которых мозг прогрессировал быстрее конечностей. Но не исключены и другие варианты. Каждый систематик может привести множество такого рода примеров по своей группе, причем в
{44}

мире растений перекрест морфоклин не менее обычен, чем среди животных. Так, китайский род троходендрон относится к группе бессосудистых цветковых, наиболее примитивной по строению проводящей системы. Однако полная редукция околоцветника обеспечивает ему место на противоположном конце морфоклины по этому признаку. Каждый вид, таким образом, входит во множество пересекающихся морфоклин. Только параметрическая система может отобразить эти сложные отношения во всем их многообразии (Любищев, 1972). Филогенетическая классификация передает лишь отношения предок — потомок, что предопределяет ее иерархическую форму. Если одна из пересекающихся морфоклин принимается за филогенетическую последовательность, то остальным автоматически отводится роль горизонтальных рядов — градационного полиморфизма на одном эволюционном уровне.


КАРИОЛОГИЧЕСКИЕ ПРИЗНАКИ
Кариологические феноклины в принципе не отличаются от морфоклин, так как в обоих случаях мы имеем дело с числом, размерами, формой и окраской, но, во-первых, хромосома представляет собой гигантскую молекулу, во-вторых, эта молекула несет генетическую информацию и, в-третьих, хромосомы как обособленные образования различимы лишь во время деления ядра клетки. Эти особенности сближают кариологический метод с молекулярными. Основная посылка метода, что сходство кариотипов свидетельствует о родстве, по-видимому, связана с представлением о случайном характере хромосомных перестроек и, следовательно, малой вероятности конвергенции. Долгое время считали, что тенденции эволюции кариотипа носят преимущественно статистический, характер: например, увеличение числа метацентрических хромосом за счет акроцентрических объясняется преобладанием частоты слияний над частотой разделений. Однако новые данные об организации хромосом существенно меняют картину. А. Лима-де-Фариа (Lima-de-Faria, 1976) выдвинул гипотезу хромосомного поля — градиента взаимодействия генов, интегрирующего хромосому как равновесную систему. Изменение какого-либо сегмента нарушает равновесие и вызывает компенсационные перестройки. Конечно, эффект положения гена известен давно, но до сих пор его значение не было должным образом оценено. Расположение локусов казалось случайным, когда оно было изучено у относительно небольшого числа видов. Положение локусов рибосомной РНК сейчас известно у сотен видов, в 86,6% случаев они находятся в коротком плече и при удлинении плеча смещаются, сохраняя дистанцию от кинетохора. Такого рода данные позволили Лима-де-Фариа выступить против концепции случайной упаковки генов и случайных мутаций.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   17




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет