Алюминий алу. Бокситтің формуласын алюминий оксиді түрінде жазғанмен, ол оның ішіндегі негізгісі ғана , алюминий оксидінен
басқа онда SiO2 (2-20%) және Fe2O3 болады.
Алюминий алудағы технологияның бас міндеті осы қоспалардан арылу. Бокситтен алюминий алудың екі сатысы бар.
-
Бокситтен глинозем (Al2O3) алу, ішінде SiO2 – 0,2%, Fe2O3 – 0.04%-тен артық болмау керек.
-
глиноземнен алюминий алу.
Бірінші сатыны өткізу үшін Байер (Ресей) ұсынған сілтілік әдісті қолданады. Ол үшін бокситті ұсатып, автоклавқа салып, NaOH не Na2CO3 ерітіндісімен шаймалайды. Сонда:
Al2O3+2NaOH=2NaAlO2+H2O
реакцияның нәтижесінен алюминий алюминат түрінде ерітіндіге көшіп, SiO2 мен Fe2O3 тұнбада қалады.
Реакцияның шарттары: NaOH – 300г/л; t 20º, қысым 1215 кПа, уақыты 3-3,5 сағат.
Енді алюминат ерітіндісін су араластырып сұйылтса, ол гидролизденеді:
NaAlO2+2H2O↔NaOH+↓Al(OH)3
Кристалданған Al(OH)3 сүзіп алып, айналмалы пеште 1200º-та суынан айырады:
2Al(OH)3=Al2O3+3H2O
Қалған NaOH қайтадан процеске қосылады.
Бокситтен глинозем алудың электртермиялық әдісі де бар, оны Кузнецов-Жуковский ұсынған.
Боксит пен әктасты араластырып доғалы электр пеште 2000ºС-та балқытады, соның нәтижесінде SiO2 мен Fe2O3 тотықсызданып ферросилиций құймасы түзіледі, ал Al2O3 пен CaO шлак Ca(AlO2)2 түзеді. Шлакты NaOH немесе Na2CO3 ерітіндісімен шаймалайды.
Ca(AlO2)2+2NaOH=Ca(OH)2↓+2NaAlO2
NaAlO2 ерітіндісін сілтілік әдістегідей глиноземға айналдырады.
Алюминий өндірісінің екінші сатысы глиноземнен алюминий алу. Оны электр пештерінде өткізеді. Темір жәшіктің іші табақ-табақ графитпен қапталады, осы графит әрі катод қызметін атқарады; анод та көмір не графиттен жасалады.
Электролит ретінде криолит (3NaF·AlF3) алынады, 950 градуста криолитта глинозем жақсы ериді, электролиз сол температурада жүргізіледі. Алюминий катодта, оттек анодта бөлініп шығады. Бұл процестің ғылыми негізін өркендетуде П.П.Федотьев үлкен еңбек сіңірді.
Алюминийдің физикалық және химиялық қасиеттері. Алюминиий күмістей ақ, жұмсақ метал. Сығылғыш, созылғыш, жайылғыш қасиеттері алтыннан ғана төменірек. Электрөткізгіштігі мыстан төменірек, бірақ мыс және алюминийден жасаған электрөткізгіш сымдарды, көлдеңенін емес, салмағын салыстырса, алюминий жеңіл, сондықтан ол электрөткізгіш жасауда мыстың орнына жұмсалады. Алюминиий өте жеңіл, айталық темірден үш есе жеңіл, сондықтан транспорт құралдарын (цистерналар, вагон, ұшақ т.б бөлімдерін) жасуға таптырмайтын металл. Алюминиий өте жұмсақ болғандықтан оның түрлі құймалары қолданылады. Алюминиийдің дуралюмин (95% Al, 4% Cu, 0,5% Mg, 0,5% Mn) магналий (12% Mg), силумин (10-14% Si, 0,1% Na) құймалары бар.
Шойын және болаттан жасалған заттарды балқыған алюминийге батырып алса, алюминий қызған шойынның өте тар саңылауларына сіңіп онымен қатты ерітінді түзеді, бұдан ол заттар 900º дейін тотықпайтын болады. бұл процесті алитирлеу деп атайды. Алюминиийдің ұнтағын – бояу ретінде, кейбір қопарғыш заттар құрамында, зымыран жасауда және алюминотермияға қолданады. Үй тұрмысында керекті бұйымдар (кастрөл, қасық, қазан т.б.) жасауға да алюминийдің жұмсалатыны мәлім.
Алюминийдің қосылыстары қалыпты жағдайда полимерлі заттар, сондықтан барлығы қатты заттар.
Алюминиий оксидінің 9 модификациясы бар, тұрақтысы альфа- Al2O3 (ромбоэдрлы торлы) мен у- Al2O3 (куб торлы). Алюминий оксиді Al2O3 оны глинозем деп те атайды; табиғатта корунд деп аталатын минерал түрінде кездеседі. Корундтың қаттылығы 9, қайрақтас ретінде қолданады. Корундқа басқа заттар араласса, мысалы хром араласса, қызыл түсті болады, оны рубин дейді, темір мен титан араласса көк түсті болады, оны сапфир дейді. Рубин мен сапфир асыл тастар қатарына жатады. Рубиндерді қазір қолдан жасайтын болды, олар дәл аспаптар механизміне, сағат тасы ретінде және әшекей заттардың сақина, түйреуіш т.б. көзіне салынады. Корундтың ұсақ түрі наждак, егеу, құм ретінде, бокситтен жасалған алунд (Al2O3) деген зат та қолданылады. Al2O3 –кристалдық модификациясы өте тұрақты, сумен және қышқылдармен әрекеттеседі. Сілтілермен көп уақыт қыздырғанда ыдырайды. Диалюминий триоксидінің негізгі қолданылатын саласы – металдық алюминийді өңдіру.
Алюминий бейметалдармен, оның ішінде оттекпен, галогендермен өте шабыт қосылысатындығына қарамай ол ауамен, сумен жанасқанда коррозияға ұшырамайды. Алюминий гидроксиді полимерлі зат, лабораторияда Al(OH)3 алюминий тұздарының сілтілермен реакцияласуында түзіледі, өзі кілегейленген коллоидтық күйде болатын зат. Тұнбаның құрамы мен құрылымы алу жағдайы мен сақтау жағдайына тәуелді. Гидроксидті алатын реакция теңдеуі
Al³+ + 3OHˉ=Al(OH)3↓+3HCl
Оның түзілу механизмінің күрделілігін толық көрсете алмайды. Гидроксидті алу сұлбасын былай көрсетуге болады. сілтімен әрекеттескенде OHˉ иондары автокомплекстердегі [Al(OH)2]³+ біртіндеп су молекулаларыныңорынын басады:
[Al(OH2)6]³++OHˉ=[Al(OH)3(OH2)5]²+ + H2O
[Al(OH)(OH2)5]²+ + OHˉ=[Al(OH)3(OH2)3]º+ H2O
Осымен қатар бір мезгілде полимеризация жүріп, көп ядролы комплекстер түзіледі, ең соңында ауыспалы құрамды Al2O3·nH2O тұнбасы пайда болады.
Біраз тұрғаннан кейін тұнба біртіндеп кристалдық Al(OH)3-ке ауысады және өзінің активтігін жоғалтып «ескіреді». Кристалдық Al(OH)3-ті алюминаттың сілтілік ерітіндісі арқылы CO2 жіберіп те алуға болады.
Al(OH)3 – нағыз амфотерлі гидроксид:
Al(OH)3+3HCl=AlCl3+3H2O
Al(OH)3+NaOH=Na[Al(OH)4]
Na[Al(OH)4] – натрий алюминаты.
Алюминий сілтіде ерігенде де алюминат түзіледі.
2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑
Қалыпты температурада алюминий галогендермен әрекеттесіп, галогенидтер түзеді, мысалы:
2Al+3F2=2AlF3
Басқа галогенидтерге қарағанда AlF3 алюминий фторидінің қасиеті өзгеше. Ол суда ерімейді, қыздырғанда балқымайды, (1040º С) бірден буланады, химиялық активсіз. Алюминий хлориді, бромиді, йодиді ковалентті димерленген қосылыстар қалыпты жағдайда оңай балқитын кристалдық заттар. Қалыпты температурада ұшқыш, өте ылғал тартқыш. Суда және органикалық еріткіштерде жақсы ериді. Алюминийдің тұздарында Al³+ ионы түссіз болады. күшті қышқылдардың тұздары суда жап-жақсы ериді. Ерітінділерде гидролизденіп қышқылдық реакция көрсетеді:
AlCl3+H2O↔AlOHCl2+HCl
Al³+ +H2O↔AlOH²++H+
Алюминийдің тұздарының ішінде маңыздылары:
Алюминий трихлориді AlCl3. Алюминий хлормен тікелей реакцияласқанда AlCl3 түзіледі. Бұл органикалық синтездерде катализатор ретінде тұтынылады. Гидраты AlCl3+6H2O.
Алюминий сульфаты Al2(SO4)3·18H2O күкірт қышқылымен глинозем арасындағы реакциядан түзіледі. Су тазалауда, қағаз өндірісінде қолданады.
Алюминий ашудасы KAl2(SO4)2·12H2O – алюминийдің техникалық маңызы зор тұзы, көп мөлшерде тері илеуде, мата бояуда қолданылады.
Ультрамарин – көк бояу, кір жуғанда ніл ретінде қолданылады. Бұл Na2S пен алюмосиликаттың қосылысы. Оны жасау үшін каолин, күкірт және соданы араластырып қыздырады.
52. Кремний. Төртінші негізгі топтың көміртектен соңғы келесі элементі – кремний. Кремний, жаратылыста таралуы жағынан салмақ пайызы бойынша оттектен кейін екінші орын алады. Көміртек органикалық заттардың құрамындағы негізгі элемент болатын болса, кремний жер қыртысын түзетін минералдық заттардың құрамындағы негізгіэлемент. Кремний жаратылыста қосылыстар түрінде ғана болдаы; ол қосылыстары: кремний қос тотығы SiO2 (кварц, құм), жер қыртысының негізгі массасы силикатты жыныстар (далалық шпат, слюда каолин т.б.). Кремнийдің тұрақты үш изотопы бар: 28Si (92,27%), 29Si (4,68%), 30Si (3,05%).
Алынуы. Кремнийді алу үшін, ақ қиыршық ұсақ құмды магниймен араластырып қыздырады:
SiO2+2Mg=2MgO+Si+89 ккал.
Кремнийді MgO және реакцияласпай қалған SiO2-ден тазарту үшін, рекациядан шыққан массаны тұз қышқылымен және фторсутек қышқылымен әрекеттейді. Магнийдің орнына тотықсыздандырғыш ретінде алюминий, көміртек алуға болдаы.
Мұнда шығатын аморфты кремний, сұр түсті ұнтақ зат, меншікті салмағы 2,35 жуық. Кремнийді балқыған металда ерітіп қайта кристалдауға болады, онда кристалдық кремний түзіледі; бұл болат сияқты сұр, металдық жылтыры бар, қатты кристалдық зат, меншікті салмағы 2,4.
Кремнийдің сыртқы электрондық структурасы 3s²3p², оның атомында sp³-гибридизация болады. ол оған үш өлшемді, алмаз тәрізді тұрақты структура береді.
Кремний түрлі құймалардың құрамына араластыруға қолданылады. Мысалы, кремний көп қосылған темір құймалары қышқылға берік болады, 4% кремний араласқан темір электр трансформаторларын жасау үшін жұмсалады. Соңғы кезде кремнийді жартылай өткізгіштер техникасында қолданатын болды; ол үшін алынуы жоғарыда жазылған техникалық кремний (95-98% Si) жарамайды, өте таза кремний керек, ондай кремнийді алу үшін SiCl4 цинк буымен тотықсыздандырады:
SiCl4+2Zn=Si+2ZnCl2
Немесе кремнийді сутекті қосылысын қыздырып айырады:
SiH4=Si+2H2↑
Химиялық қасиеті жағынан кремнийдің кристалдық түрі инертті, аморфты түрі реакцияласқышырақ. Айталық, фтормен қалыпты жағдайда-ақ, оттек, хлор, бром және күкіртпен 400-600ºС, азот және көміртекпен өте жоғары температурада реакцияласады.
Жеке қышқылдар кремнийге еш әсер етпейді, қайта пассивтеніп кетеді, кремний HF мен HNO3 қоспасында ериді:
3Si+4HNO3+18HF=3H2SiF6+4NO+8H2O
Сілтілердің әрекетінен кремний тұзға айналады:
Si+2KOH+H2O=K2SiO3+2H2
Құм мен коксты тиісті мөлшерде араластырып қыздырса, кремний мен көміртектің қосылысы – кремний карбиді SiC түзіледі, оны көбіне карборунд деп атайды.
SiO2+3C=SiC+2CO
Таза карборунд – түссіз кристалдық, өте қатты зат, қаттылығы алмаздан ғана кем, тығыздығы 3,2 г/см³. Техникада карборунд көп мөлшерде өндіріп, қаттылығын пайдаланып, қайрақ тастар, шлифтайтын дөңгелектер жасауға т.б. және отқа берік материал ретінде пайдаланады.
Құм мен магний арасындағы реакцияда, магнийді артығырақ алса, тотықсызданып шыққан кремний магниймен қосылып магний силицидін Mg2Si түзеді:
4Mg+SiO2= Mg2Si+2MgO
Металдарды кремниймен тотықтырғанда (700-1200ºС) металл оксидімен кремнийді араластырып инертті атмосферада қыздырғанда да силицидтер түзіледі:
6MnO+5Si=2Mn3Si+3SiO2
Силицидтер қасиеті және құрылымы жағынан да карбидтарға ұқсамайды. Қосылушы металдың қасиетіне тәуелді силицидтердегі байланыс ионды, коваленттіден металдыққа дейін өзгере береді, осыған байланысты кейбір силицидтер өткізгіш, кейбіреулері шалаөткізгіш болып келеді.
Силицидтер қатты қыздырғанда айрылмайтын қосылыстар, кейбір активті металдың силицидтері сумен, қышқылмен реакцияласады.
Силицидтерді отқа берік, қышқылға төзімді құймалар, жоғары температурада ұсталатын шала өткізгіштер ( CrSi2, COSi2, ReSi2) жасауда қолданады. Кейбір силицидтер атомдық техникада пайдаланылады.
Магний силицидіне хлорсутекпен әрекет етсек, кремний сутексилан деп аталатын зат түзіледі:
Mg2Si+4HCl=2MgCl2+SiH4
Силан SiH4 – түссіз, ауада өзінен-өзі тұтанып, жанып кететін газ, жанғанда кремнийдің диоксиді және су түзіледі.
SiH4+2О2=SiO2+2H2O
Қышқылдары. Кремний диоксиді SiO2 кремний қышқылының ангидриді болғанымен, суда ерімейді, әрі онымен реакцияласпайды. Кремний диоксидіне сәйкес келетін қышқыл ортокремний қышқылы H4SiO4, ол қышқыл оңай конденсацияланып полиметакремний қышықылын H2(SiO3)n түзеді, оны қысқартып H2(SiO3)n деп те жазады.
Кремний қышқылын алу үшін әдетте Na2SiO3 не K2SiO3 ерітіндісін күкірт, не тұз қышқылымен әрекеттейді, сонда алдында мөп-мөлдір ерітінді кілегейленіп қатады, не коллоид күйіне көшеді, ол ерітіндіде түзілген кремний қышқылы, бұл процестің теңдігі мынадай :
Na2SiO3+2HCl=H2SiO3+2NaCl
Бұл теңдікте кремний қышқылының формуласы да келісім бойынша шартпен жазылып отыр, өйткені бұл реакциядан құрамын бір формуламен жазатын бір қышқыл түзілмейді. Фосфордағы сияқты, кремнийдің де, бірнеше толып жатқан қышқылдары бар, айырмашылығы құрамдарындағы судың мөлшерінде. Жанағы реакция нәтижесінде сол қышқылдардың қоспасы түзіледі.
Кремний қышқылдарының құрамын xSiO2·yH2O деп жазады. х пен у мәні реакция жағдайына қарай өзгере береді, онда қышқылдардың құрамы да өзгереді.
Кремний қышқылдары силикаттардың қышқылдармен әрекеттесуінен басқа кремнийдің кейбір қосылыстарының (галогенид, сульфид т.б.) гидролизінен де түзіледі. Мысалы, SiC2 гидролизінде әуелі ортокремний қышқылы H4SiO4 түзіледі.
Бұл қышқыл суда ерімтал, бірақ біраз тұрса полимерленіп кетеді. Сол полимерленудің жеке сатылары ретінде мынадай қышқылдардың түзілуін көруге болады:
2H4SiO4-H2O=H6SiO7(2SiO2·3H2O)
Бұл диортокремний қышқылынан тетраортокремний қышқылы түзіледі:
2H6Si2O7-H2O=H10Si4O13(SiO2·5H2O)
2H4SiO4-H2O=H6SiO7(2SiO2·3H2O)
Ақырында, сақина тұйықталған кезде тетраметакремний қышқылы:
H10Si4O13- H2O= (H2SiO3)4(SiO2·H2O) түзіледі.
Тұздары. Кремний қышқылдарының тұздарын силикаттар деп атайды, оларды жай силикаттар және күрделі силикаттар деп екіге бөледі. Кремний қышқылдарының құрамындағы сутектер түгел, жарым-жартылай түрліше металдарға ауысқаннан түзілген қосылыстарды жай силикат дейді. Жаратылыста күрделі силикаттар көбірек кездеседі, ал күрделі силикат дейтініміз жалпы формуласы xЭ2O3·ySiO2·zH2O болып жазылатын қышқылдардың туыедылары. Мұндағы Э ол Al, Fe,Cr т.б., ал Al болса, бұларды алюмосиликат деп атайды.
Ақ түсті таза каолин сирек кездеседі, оны фарфор жасау үшін пайдаланды. Біздің саз деп қолданатынымыз каолин мен түрлі заттардың қоспасы.
Адам силикаттарды табиғи күйінде пайдаланумен қатар жасанды силикаттар түрінде де қолданады, ол үшін силикаттар мен кремнеземнен шыны, керамика бұйымдарын, фарфор, фаянс және құрылыс материалдарын жасайды. Осы аталған өндіріс саласын силикат өнеркәсібі дейді.
54. Германий топшасы элементтерінің жалпы сипаттамасы. Топшалардағы элементтердің барлығы үлкен периодтың элементтері, олардың сыртқы екінші қабатында 18 электрон бар. Міне, соның салдарынан олардың қасиеттері негізгі топтың бастапқы элементтеріне қарағанда металдық қасиет біліне бастайды. Осы өзгешелік селен топшасында нашарлау болса, күшән топшасында одан күштірек, германий топшасында әжептәуір айқын көрінеді.
Топшалардағы элементтердің қасиеттерінің өзгерісі, периодтық жүйенің жалпы заңына сәйкес, топ ішінде жоғарыдан төмен, топтар арсында оңнан солға қарай металдық қасиет өсіп отыр.
Осы айтылғанға сәйкес, германий топшасындағы элементтердің электрон қосып алып реакцияласуға бейімділігі нашар, мысалы көміртек пен кремний сияқты сутекті қосылыстар түзгенмен, ол қосылыстар тұрақсыз.
Ал электрон беріп реакцияласуы оңайырақ, әрі германийдан қорғасынға қарай жеңілдей береді. Сондықтан германийда металдық қасиет пен бейметалдық қасиет бірдейге жақын, қалайыда, әсіресе қорғасында металдық қасиет басым. Қалайы мен қорғасын физикалық қасиеттері жағынан нағыз металдар, тек химиялық қосылыстарында ғана өте нашар бейметалдық қасиет көрсетеді.
Германий. Германийдай элемент болу керек екендігін 1871 жылы Д.И.Менделеев периодтық заңды ашқанда болжаған болатын. 1885 жылы Винклер германийді ашып соның растығын анықтады. Жер қыртысындағы германийдің жалпы мөлшері, қорғасын мөлшерінен кем емес, бірақ бұл бытыраңқы элемент болғандықтан жиналыңқы кендер түзбейді. Германий басқа элементтердің кендерінде аралас өте аз мөлшерде – германит 6CuS·GeS2 және аргиродит 4Ag2S·GeS2 минералдары түрінде кездеседі. Германийді тас көмірлердің күлінен, түтін, мұржалар тозаңынан, мырыш және темір кендерінен ажыратып алады. Ол үшін германийді ұшқыш қосылыс, хлоридке GeCl4 айналдырады, хлорид айдау арқылы тазартылып, одан гидролиздендіріліп диоксидке GeO2 аударылады, диоксидті сутекпен тотықсыздандырып таза германий алады. Аса таза германий алу үшін жаңағы германийді балқытып одан германийдің монокристалын өсіріп шығарады.
Германий күмістей ақ металл, өте морт сыңғыш. Қыздырғанда да онша тотықпайды. Қышқылдардан күкірт және азот қышқылдары тотықтырады, ал сілтілерде ерып кетеді. Оттекпен, галогендермен жоғары температурада ғана реакцияласады. Германий қазіргі заманда ерекше маңызды элемент, ол шала өткізгіштер жасауда таптырмайтын өте қажет зат болады, кейбір құймаларға да араластырылады.
Екі валентті германийдің қосылыстары тұрақсыз, төрт валенттіге оңай ауады
Германий екі валентті оксиді GeO – қара түсті ұнтақ, тұрақсыз. Германий гидроксиді Ge(OH)2 ерімтал, амфотерлі зат, қышқылдығы сәл басым, оны былай алады:
GeCl2+2KOH=Ge(OH)2+2KCl
Төрт валентті германийдің қосылыстары. Германийдің диоксиді GeO2 – кристалдық ақ түсті зат. Амфотерлі. Германий қышқылы тұрақсыз. Тұздарын германат деп атайды.
Германий галогендермен, мысалы германий тетрахлориді GeCl4, күкіртпен дисульфидін GeS2 түзеді.
56. Ванадий топшасы. Ванадий топшасына ванадий , ниобий және тантал кіреді. Скандий және титан топшасы сияқты ванадий топшасындағы металдар үлкен периодтардың жұп қатарларының элементтері.
Бұл қосымша (V-B) топтағы металдардың негізгі топтағы элементтермен ұқсастығы жоғарғы валентті қосылыстарында, бұлардың сыртқы қабатындағы электрон саны (1-2) болғандықтан металдық қасиеттері басым. Бұлардың төмен валентті қосылыстары негіздік қасиеті болады да, жоғары валентті қосылыстары, мысалы, оксидтері қышқылдық, өйткені оларға сәйкес қышқылдар және тұздар бар. Топ бойымен жоғарыдан төмен қарай, қышқылдықтан амфотерліге қарай өзгереді, демек металдық қасиет күшейеді.
Бұл үш металдың үшеуі де өте маңызды металл болғандықтан алу технологиясы қиын болғанымен, оларды бос жеке күйде алуға тырысады. Үшеуін де таза түрде алюминотермия жолымен алуға болады:
3Э2O5 + 10 Al=5Al2O3+6Э
алюминийдің орнына кальций, не магний алса тотықсыздану процесі жақсырақ өтеді.
Ванадий, ниобий және тантал жылтыраған сұр түсті металдар. Таза күйінде түрлі химиялық әрекеттерге берік, әсіресе ниобий мен тантал қышқылдарда да және олардың қоспаларында да ерімейді. Бұл металдардың атомдық және иондық радиустарына қарасақ ниобий мен танталдікі бірдей, ол әрине лантаноидтық жиырылудың салдары. Бұл металдардың физика-химтялық қасиеттері олардың таза болуына өте тәуелді. Айталық сутек, диоттек, азот, көміртек араласса, олардың беріктігін, иілгіштігін төмендетеді, қаттылығын өсіреді.
Ванадий, ниобий және тантал диоттек, галогендер, азот, көміртек, сутек және басқалармен реакцияласады. Бірақ бұлардың белсендігі – жоғары температурада ғана білінеді, өйткені мұндай жағдайда, бұларды пассивтендіріп тұрған, сыртын қаптаушы оксид қабыршағы бұзылады. Диоттекпен қыздырғанда реакцияласып оксид (Ме2О5) түзеді, кіші валентті оксидтері де ( Ме2О4, Ме2О3, Ме2О2) белгілі.
Галогендермен де қыздырғанда реакцияласып VF5-түссіз кристалдық зат түзеді, Nb мен Ta ұшқыш галогенидтер түзеді. Галогенидтері гидролизденгіш:
NbCl5+4H2O→ H3NbO4+5HCl
Ванадий топшасы металдарымен сутек тікелей реакцияласпай, металдардың бойына көп мөлшерде сіңіп кетеді. Бірақ сутек осы сіңіп еруде көп жылу бөліп шығарады, демек ол химиялық қосылыс түзгендігінің белгісі. Азотпен 1000-1100ºС жоғары құрамы MeN типтес нитридтер түзіледі. Таза нитридті термиялық диссоциацияланған аммиак буында алуға болады:
V2O2+3H2+N2→2VN+2H2O+H2↑
2NH3
бұл нитридтер, қатты, балқуы қиын тұрақты қосылыстар Nb2N, NbN «патша сұйығында» да айрылмайды.
Ванадий, ниобий және тантал балқыған күйде көмірсутекпен тікелей әрекеттесуінен карбидтер түзіледі: V5C, V2C, V4C3 және VC, Nb2C, NbC, Ta2C, TaC. Карбидтер электр өткізгіш заттар, өздері басқа металдарда ериді.
Кремниймен де балқыған күйде реакцияласып, силицидтер MeSi2 түзеді. Бұлар қатты, балқуы қиынотқа берік заттар өндірісінде үлкен роль атқарады. Химиялық өте тұрақты заттар.
Борид, сульфид, фосфид қосылыстары да бар.
Сумен бұл металдар, қорғауыш қабыршағы болғандықтан реакцияласпайды.
Қышқылдарға қатынасына келсек, азот қышқылында ванадий тотығады.
3V+5HNO3→3HVO3+5NO↑+H2O
осы реакциямен қатар
V+3H2SO4→(VO)SO4+2SO2↑+3H2O
V+6HNO3→(VO2)NO3+5NO2↑+3H2O жүруі мүмкін.
Nb мен Ta «патша сұйығында», не HF HNO3-те ериді:
3Nb+5HNO3(HF) → 3HNbO3+5NO↑+H2O
Осымен қабат:
3Nb+5HNO3+21HF→3H2[NbF7]+ 5NO↑+10H2O
Ванадий «патша сұйығында» ериді:
3V+4HNO3+12HC→3VCl4+4NO↑+8H2O
Ванадий (IV) тетрахлориді – қызыл-қоңыр түсті полюссіз сұйықтық, сумен жартылай ванадий дихлоридіне дейін гидролизденеді.
Сілті ерітінділерімен V, Nb, Ta реакцияласпайды. Балқыған сілтілерде, бетіндегі оксид қабыршақтарда реакцияласу есебінен, металдар біртіндеп күйрейді:
Me2O5+2KOH→2KMeO3+H2O
Диоттек қатынасында былай реакцияласады:
4Me+5O2+12KOH→4K3[ЭO4]+6H2O
58. Титан топшасы. Титан топшасына титан, цирконий, гафний және курчатовий элементтері жатады.
Бұл металдар көптен-ақ белгілі, жер қыртысындағы мөлшері , айталық йод пен сүрмеден көбірек, ал титан көміртектен көп, бірақ олардай игеріліп, іс жүзінде қолданылуы кем, өйткені бұлар бытырыңқы кездеседі және алу тәсілдері қиын.
Бұлардың сыртындағы s² электрондары мен ішкі d² электрондары валенттік байланыс түзуге қатынасады, сондықтан бұлар оң төрт валенттік көрсетеді; теріс валентті болмайды.
Ең сыртқы қабатта 2 ғана электрон болғандықтан, бұлар германий топшасындағы металдарға қарағанда, негіздік (металдық) қасиеті күштірек, әрі топ бойында, жоғарыдан төмен қарай күшейе түседі, мысалы Ti(OH)4 амфотерлі, ал Hf(OH)4–тің негіздік қасиеті әлдеқайда басым.
Мұның үшеуі де болатқа ұқсас сұр металл, механикалық өңдеуге икемді, балқу температуралары жоғары.
Үшеуі де ауада, суда өзгермейді. Бұл элементтерде металдық, яғни тотықсыздандырғыш қасиеттері болады. Кәдімгі жағдайда тұрақты, ең агрессивті ортаның өзінде коррозияға ұшырамайды. Балқу температураларына жеткізе қатты қыздырғанда химиялық белсенділігі бірден өседі. Бұл жағдайда галогендермен әрекеттесіп, тетрагалогенидтер түзеді:
Ti+2Cl2=TiCl4
(тетрахлорид титан (V))
Диоттекпен титан 1200º-1300º С, цирконий 600º-700ºС қосылады:
2Zr+O2=ZrO2
Оксидтерінің амфотерлі қасиеті бар. Титан топшасының элементтері температура әсерінен күкіртпен, азотпен және көміртекпен әрекеттесіп сульфид, нитрид (MeN) және карбид (MeC) түзеді. Соңғы екеуі өте қатты (TiN-қаттылығы алмаздай) және қиын балқитын қосылыстар (>3000ºС).
Титан топшасының металдары салқын суға әсер етпейді, қайнап тұрған судан сутекті ығыстырып шығарады.
Me+H2O=Me(OH)4+2H2↑
Түзілген гидроксид металдың бетін қаптап, реакцияның ары қарай жүруіне кедергі жасайды.
Тотықтырғыш емес қышқылдардан титан сутекті ығыстырады: үш металдың барлығы да фторсутек қышқылымен әрекеттеседі.
Титан топшасы металдарының бетінде қорғаныш қабығы болатындықтан оттекті қышқылдар әсер етпейді, тек лоары бүлінсе ғана тотығу реакциясы жүреді:
3Ti+4HNO3+H2O=3H2TiO3+4NO↑
Ti+4H2SO4=Ti(SO4)2+2SO2↑+4H2O
Титан топшасының металдары «патша сұйығында» оңай ериді:
3Zr+4HNO3+12HCl=3ZrCl4+4NO↑+8H2O
Бұл металдарды ауаду сілтімен балқытқанда метатұздар түзіледі:
2Ti+4KOH+O2=2K2TiO3+2H2O
Күшті сілтілік ортада титан ерітіндідегі орта титанат түріне айналады:
Ti+4KOH(конц)=K4TiO4+2H2↑
Оксидтер TiO2, ZrO2 және HfO2 қыздырғанда тұрақты заттар, оларды HF әсерімен немесе сілтілермен, карбонаттармен және дисульфаттармен балқытып қана ерітінділерін алуға болады. түзілген сілтілік металдардың титанат, цирконат және гафнаттарын (K2ZrO3-калий метацирконаты, K4TiO4-калий ортотитанаты) тұздар деп емес, қос оксидтер деп қараған дұрыс.
Сулы ерітіндіден TiO(OH)2·2H2O және цирконий мен гафний оксидтерінің полигидраттарын ЭO2·nH2O тұнбаға түсіруге болады. ЭO2·nH2O аздап қыздырғанда олар ЭO(OH)2-ге ауысады. Бұл гидроксидтердің барлығы аздаған негіздік қасиеті бар амфотерлік заттар. TiO(OH)2-да аталған қасиет әлсіз, ал цирконий мен гафний гидроксидтерінде негіздік қасиет басымырақ, оларды ерітіндіге тек қышқылдармен ғана көшіруге болады.
Ерітіндіде түзілетін титан, цирконий мен гафний катиондары мен аниондарының құрамы өте күрделі және еру жағдайына тәуелді. Титан көп жағдайда [Ti(H2O)6-n(OH)n](4-n) (n=2-4) иондары түрінде кездеседі және ортаның сілтілігін арттырғанда поликонденсацияланады, OHˉ пен O²ˉ лиганд ролін атқарады.
Цирконий мен гафний қышқыл ортада [Э(H2O)16(OH)8]8+ иондары түрінде болады, сілті қосқанда [ЭO(OH)2] гидроксидтеріне ауысады. IV-Б тобы элементтерінің тотығу дәрежесі (+IV)-ке тең қарапайым катионды аквакомплекстері болмайды.
Титан, цирконий мен гафнийдің құрамы күрделі емес тұздары жоқ. Мысалы, жай титан (IV) сульфаты орнына сулы ерітіндіден титан дигидроксидсульфаты TiSO4(OH)2 кристалданады, (сульфат Ti(SO4)2 сусыз ортада алуға болады.) цирконий (IV) хлориді гидролиз нәтижесінде ZrCl2O·8H2O түрінде тұнбаға түседі, немесе нақтырақ былай жазуға болады: [Zr4(H2O)16(OH)8]Cl8·12H2O. Гафний (IV) нитраты - [Hf(H2O)4(NO3)2(OH)2] комплекс түрінде кездеседі.
IV-Б тобының элементтері жоғары тотығу дәрежесінде жақсы комплекс түзушілер. Жоғарыда танысқан аквагидроксомен фторокомплекстерінен басқа цирконий мен гафнийдің органикалық лигандтарымен ацидокомплекстер, мысалы [Zr4(C2O4)3]²ˉ, сонымен қатар координациялық саны жоғары фторокомплекстер [ZrF7]³ˉ, [HfF8]4ˉ түзеді.
Достарыңызбен бөлісу: |