Рис.10. Неконсервативное поведение Fe и Mn при возрастании рН в зоне смешения флюидов и придонной воды на гидротермальном поле 9о50’с.ш. ВТП (данные автора).
Анализ литературных и собственных данных показал (Табл.5), что в воде над поселениями фауны на полях с высокотемпературными источниками ВТП, для которого характерны высокие скорости спрединга (>11 см/год) среднее содержание ряда металлов (Fe, Mn, Zn, Cr, Pb и Ag) в несколько раз выше, чем в воде биотопов низкоспредингового (<6 см/год) САХ как с низко-, так и с высокотемпературными источниками. В пределах САХ среднее содержание большинства металлов в воде биотопов полей с высокотемпературными источниками (Брокен-Спур и Рейнбоу) лишь в 2-10 раз выше по сравнению с низкотемпературным полем Менез-Гвен (Табл.6); тогда как в исходных
Таблица 5. Общая концентрация микроэлементов (мкмол/л) в воде биотопов САХ и ВТП.
Элемент
|
САХ
|
ВТП
|
|
низко-То *)
|
высоко- То **)
|
высоко- То ***)
|
|
сред.
|
миним.
|
макс.
|
сред.
|
миним.
|
макс.
|
сред.
|
миним.
|
макс.
|
|
|
|
|
|
|
|
|
|
|
|
|
Fe
|
0,35
|
0,21
|
0,5
|
4,03
|
0,16
|
10,3
|
18,65
|
5,0
|
62,6
|
|
Mn
|
0,44
|
0,04
|
0,85
|
2,29
|
0,22
|
7,31
|
12,97
|
1,48
|
43,6
|
|
Zn
|
0,64
|
0,07
|
1,21
|
2,31
|
0,43
|
7,64
|
9,22
|
0,3
|
27,3
|
|
Cu
|
0,16
|
0,06
|
0,33
|
1,78
|
0,14
|
1,99
|
1,02
|
0,27
|
3,1
|
|
Ni
|
0,24
|
0,18
|
0,3
|
0,6
|
0,01
|
1,61
|
0,25
|
0,09
|
0,41
|
|
Cr
|
0,02
|
0,01
|
0,03
|
0,03
|
0,02
|
0,08
|
0,39
|
0,01
|
0,76
|
|
Co
|
0,02
|
0,001
|
0,03
|
0,51
|
0,003
|
1,29
|
0,2
|
0,16
|
0,29
|
|
As
|
0,23
|
0,12
|
0,43
|
0,66
|
0,17
|
1,28
|
0,33
|
0,1
|
0,73
|
|
Sb
|
0,03
|
0,02
|
0,05
|
0,25
|
0,04
|
0,72
|
0,2
|
0,03
|
0,57
|
|
Pb
|
0,01
|
0,003
|
0,022
|
0,025
|
0,001
|
0,08
|
0,06
|
0,01
|
0,26
|
|
Cd
|
0,002
|
0,0001
|
0,012
|
0,029
|
1E-04
|
0,134
|
0,01
|
0,001
|
0,05
|
|
Ag
|
0,016
|
0,003
|
0,025
|
0,006
|
0,002
|
0,009
|
0,017
|
0,002
|
0,039
|
|
Hg
|
5E-04
|
1E-06
|
3E-04
|
5E-04
|
1E-06
|
0,002
|
н.д.
|
н.д.
|
н.д.
|
|
*) Менез-Гвен (Kadar et al., 2005; Демина, Галкин, 2008);**) Рейнбоу (Desbruyères et al., 2001; Демина, Галкин, 2008); Брокен-Спур [данная работа]; ***) 9o с.ш.(Демина и др., 2007); 13oc.ш.(Sarradin et al., 1999, 2008), ***) Гуаймас (Demina et al., 2009).
|
|
|
|
|
|
|
|
флюидах эти различия составляют 50-1000 раз. Таким образом, в результате комплекса физико-химических и биогеохимических процессов резкие различия в уровнях металлов,
свойственные исходным флюидам различного типа гидротермальных полей, заметно сглаживаются в воде биотопов.
Для большинства изучаемых элементов выявлена связь между концентрацией микроэлементов (мкМол/л) в воде биотопа и тканях гидротермальных животных. Повышенная концентрация микроэлементов в воде биотопа симбиотрофных двустворчатых моллюсков Bathymodiolus на высокотемпературном поле Рейнбоу САХ по сравнению с низкотемпературным полем Менез-Гвен (рис. 11 а, б) отражается на повышенном накоплении микроэлементов в жабрах этих митилид (рис. 11 в, г), где локализованы бактерии-эндосимбионты.
Концентрация микроэлементов в воде биотопов доминантной фауны является важным, но не единственным фактором, контролирующим их бионакопление в мягких тканях. Так, в воде над поселениями митилид концентрация таких эссенциальных (физиологически важных) металлов как Fe, Mn and Zn на поле Рейнбоу значительно выше, чем на поле Брокен-Спур САХ (Демина, Галкин, 2008).
Рис. 11. Содержание микроэлементов в воде (мкМол/л) биотопа (а, в) и жабрах
(мкг/г сух.в.) (б, г) двустворчатого моллюска Bathymodiolus azoricus на полях
Менез- Гвен и Рейнбоу (САХ).
Однако в мягких тканях моллюсков Bathymodiolus azoricus, особенно в жабрах, заселенных бактериями-эндосимбионтами, на поле Рейнбоу подобного превышения содержания этих металлов не отмечается. Очевидно, это обусловлено влиянием других абиотических факторов. Так, интенсивность первичной продукции хемосинтеза (скорость бактериальной CO2-ассимиляции) на поле Брокен-Спур (2,82 мг C л-1 день-1) в 2 раза выше, чем на поле Рейнбоу (Леин, Пименов, 2002), что, по-видимому, способствует и большему поглощению микроэлементов. Напротив, более высокие потоки частиц в придонном слое поля Рейнбоу, в 200 раз превышающие потоки в пелагиали океана (6,9 и 0,032 г м-2 день-1соответственно), могут снижать фильтрующую активность моллюсков (Desbruyères et al., 2001), которые, согласно изотопным данным, используют, наряду с симбиотрофией, и ОВ, связанное со свободно живущими автотрофными бактериями, а также минерализованное ОВ, поступившее сверху (Van Dover, 2000). По нашим данным, общий поток оседающих частиц в 15 м от дна (1,73 г м-2 день-1) в 3 раза выше, чем в вышележащих горизонтах, что обусловлено дополнительным привносом с гидротермальным и адвективным потоками; основной прирост потоков Fe, Mn, Cu, Zn, Ni связан с увеличением геохимически-подвижных форм – гидрооксидов Fe и Mn, сульфидов и адсорбированного комплекса металлов (Лисицын и др.,1990; Tambiev, Demina, 1992). Скорости осаждения частиц, уловленных СЛ, предельно высоки – до 2000 м в сутки, соответственно время пребывания изученных элементов в наддонном слое колеблется от 0,2 (Fe) до 85 (Sr) дней.
В карбонатных раковинах арагонитового (Calyptogena) или кальцитового (Bathymodiolus) состава уровень содержания и характер распределения металлов в определенной степени отражает их содержание в воде биотопа. На высокотемпературных полях САХ раковины митилид обогащены Fe и Mn в 20-30 раз по сравнению с их аналогами с поля Менез-Гвен (рис. 12а).
а)
б)
Рис.12. Среднее содержание (мкг/г сух в.) микроэлементов в раковинах
двустворчатых моллюсков Bathymodiolus sp. с разных гидротермальных полей.
Такие абиотические факторы среды обитания как морфология гидротермальных построек, распределение активных зон поступления диффузных флюидов и теплых истечений определяют фаунистическую зональность, т.е. характер распределения организмов в пределах гидротермального поля (Галкин, 2002). Наибольшая плотность поселения фауны отмечена в температурном диапазоне 25-5оС (Биология гидротермальных систем, 2002).
Внутри гидротермального поля с температурной зональностью связаны и уровни биоаккумуляции микроэлементов в гидротермальных организмах (Демина и др., 2007; Демина, Галкин, 2008). В трубках полихет-альвинеллид поля 9о50’с.ш. ВТП пиковые концентрации достигают 16,1% Fe, 3,73% Zn, 1,11% Cu, 3,5·10-2 % Pb, нескольких десятков мкг/г Mn, Ni, Cr, Cd, и Se, и около 10 мкг/г Ag, As, Co и Hg. Полихеты Alvinella pompejana обитают в наиболее высокотемпературной зоне (60-40оС) на сульфидном субстрате, где влияние разгружающихся флюидов сказывается в наибольшей степени. Супертермофилы Alvinella pompejana - грейзеры, которые питаются взвешенным ОВ, созданным бактериями прямо на выходе флюида, что способствует наибольшему их обогащению микроэлементами по сравнению с симбиотрофными организмами - вестиментиферами Riftia pachyptila, Bathymodiolus thermophilus и Calyptogena magnifica, которые селятся в более прохладных (25-6 оС) водах (рис.13). При удалении от гидротермального источника среднее содержание тяжелых металлов в мягких тканях организмов уменьшается по-разному для разных групп элементов. Накопление в таксонах эссенциальных и сульфидобразующихметаллов - Fe, Zn и Cu, среднее содержание которых многократно выше, чем остальных металлов, наиболее резко (на 2-3 порядка величин) снижается при переходе от источника к периферии.
Рис.13. Распределение металлов и металлоидов в мягких тканях организмов, обитающих
в трех температурных зонах и периферии поля 9о50’с.ш. ВТП (Демина и др., 2007).
Для остальных микроэлементов (Mn, As, Pb, Ni, Ag, Cr, Se, Sb, Hg и Cd), имеющих более низкие уровни содержания в биоте (от 120 до менее 10 мкг/г сух.веса), сильное превышение отмечено лишь в наиболее теплолюбивых альвинеллидах (рис. 13).
На гидротермальных полях САХ наиболее представительными теплолюбивыми организмами являются специализированные креветки Rimicaris exoculata, роящиеся при температуре 20-30оС в «муарах» (Верещака, 1996). В ротовых конечностях (максиллопедах) этих симбиотрофных креветок, где функционируют нитчатые бесцветные серобактерии (Верещака и др., 2004), также содержатся предельно высокие количества металлов: до 3 % Fe, 0,58% Zn, 0,71% Mn, 0,41% Cu; до 200 мкг/г Cd, Ni, Co и Cr (Демина, Галкин, 2008). Внутри поля Рейнбоу САХ в креветках Rimicaris exoculata, обитающих в более высокотемпературных и, следовательно, более подверженных влиянию флюидов биотопах, найдено более высокое содержание микроэлементов по сравнению с другим массовым таксоном САХ – двустворчатыми моллюсками Bathymodiolus spp.
Выживаемость фауны в высокотемпературной среде обитания обеспечивается при естественной детоксикации сероводорода, когда наиболее токсичные формы серы - H2S и HS- - замещаются на менее токсичные гидратированные комплексы FeS-nH2O (Le Bris et al., 2006). Другой важный механизм защиты от вредного воздействия среды обитания - формирование металлотионеинов, т.е. низкомолекулярных белковых комплексов, связывающих тяжелые металлы в нетоксичные для организмов формы, присутствующих не только в гидротермальных (Rousse et al., 1998), но и в прибрежных (Phillips, Rainbow, 1989) организмов.
Из литературных и собственных данных следует, что среди отдельных органов и тканей наибольшие содержания микроэлементов, на 1-2 порядка выше, чем в других тканях, отмечаются в органах, где сконцентрированы сероокисляющие бактерии-эндосимбионты; это жабры двустворчатых моллюсков Bathymodiolus и Calyptogena, трофосома вестиментиферы Riftia и максиллопеды креветок Rimicaris. Проведенные нами измерения содержания органического углерода (Сорг) в более чем ста пробах различных органов гидротермальных животных показали, что именно в жабрах Bathymodiolus и трофосоме Riftia определены предельно высокие содержания Сорг (до 63 %). Очевидно, обогащение металлами этих беспозвоночных обусловлено образованием стойких в этих условиях биополимеров.
Геохимические особенности поля Гуаймас (Калифорнийский залив) обусловлены сочетанием мощного осадочного чехла с высоким содержанием Cорг (до 6.21%) (Пересыпкин и др., 2005) и высокой продукции бактериального хемосинтеза, которая в бактериальных матах достигает 27 мг Cорг м-2день-1(Леин и др., 1988), а в верхнем 50-см слое донных осадков - 91 мг Cорг м-2день-1 (Гальченко и др., 1989), что в несколько раз выше, чем на других полях. Обогащенность среды обитания органическим веществом, очевидно, способствует проявлению миксотрофии двустворчатых моллюсков – т.е. питания за счет фильтрации и сестнофагии, наряду с симбиотрофией (Von Dover, 2000).
Наибольшая биоакумуляция микроэлементов найдена нами не только в органах, связанных с бактериальным хемосинтезом: пиковые содержания Fe, Cu, Ag, Pb, Cd, As, Sb определены в мантии моллюсков-везикомеид Archivesica gigas. Высокие биоакумуляционные свойства проявились и у неспециализированных организмов - моллюсков Leda (Nuculana grassley), актиний Actiniаria и губок Spongia. Обнаружение в губке Spongia пиковой концентрации Mn ( 2915 мкг/г сух.в.), которая в 4 раза выше, чем Fe, и почти в 15 раз выше, чем Zn, а также близость мольного отношения Fe/Mn в организме Spongia и воде микробиотопа, является следствием геохимических особенностей бассейна Гуаймас, во флюидах которого Mn преобладает над другими металлами.
Среди биотических факторов, контролирующих биоаккумуляцию металлов в гидротермальных организмах, рассмотрим трофическую структуру (тип питания), стадии онтогенеза (возраст), содержание Cорг в тканях, влияние бактерий.
Трофическая структура гидротермальных бентопелагических сообществ отражает специфику гидротермальной среды, находящейся под влиянием флюидов. В основании пищевой цепи здесь находятся хемосинтезирующие бактерии - первичные продуценты ОВ, что является коренным отличием глубоководных гидротермальных сообществ от фотосинтетических. Специализированные гидротермальные организмы являются консументами 1-го трофического уровня, это преимущественно животные- эндосимбиотрофы: двустворчатые моллюски Bathymodiolus spp., Calyptogena magnifica, вестиментиферы Riftia, существующие в симбиозе с внутриклеточными бактериями, и экзосимбиотрофы (креветки Rimicaris и полихеты Alvinella, питающиеся серобактериями). Кроме того, сюда относятся и неспециализированные животные - бактериофаги (грейзеры, детритофаги и фильтраторы). На 2-ом трофическом уровне существуют плотоядные животные – хищники и некрофаги: гастроподы, крабы Segonzacia, Bythograeidae, Munidopsis, полихеты и креветки Alvinocaris (Галкин, 2002).
Трофическая структура имеет важное значение в биоаккумуляции микроэлементов: организмы более низкого трофического уровня характеризуются и пониженной концентрационной функцией (Кнак.). В первичных продуцентах (хемоавтотрофных бактериях) Кнак Fe, Cu и Zn составляет n·103, что примерно на порядок ниже, чем в симбиотрофных фильтраторах (двустворчатых моллюсках) и хищниках (крабах) в гидротермали САХ (Kadar et al., 2007). Аналогичным образом, в гидротермали бассейна Гуаймас ВТП Кнак металлов на 1-2 порядка выше в актиниях и губках (т.е. в хищниках и фильтраторах-сестонофагах, относящихся к более высокому трофическому уровню), чем в вестиментиферах и двустворчатых моллюсках - специализированных организмах-симбиотрофах более низкого трофического уровня (Demina et al., 2009).
Мягкие ткани моллюсков существенно (в 20-30 раз) обогащены Сорг относительно раковин. На различных полях САХ и ВТП в среднем содержании Сорг, составляющем (34,5±10,1)%, сильных различий не обнаруживается. Статистическая обработка данных не показала значимых ранговых коэффициентов корреляции (критерий Пирсона) каждого из микроэлементов с содержанием Сорг.; биоаккумуляция в мягких тканях, по-видимому, слабо контролируется общим содержанием в них Сорг.. Из экспериментов по экстракции липидов, проведенных совместно с сотрудниками Лаборатории химии океана (В.И.Пересыпкин, Н.Г.Шульга), выяснилось, что Cu, Zn, Cr, Se и Sb в большинстве случаев накапливаются в липидной фракции ОВ с коэффициентом обогащения 50 до 1000 относительно их общего содержания в мягких тканях симбиотрофных таксонов.
Влияние онтогенеза на биоаккумуляцию микроэлементов изучено нами на примере моллюсков Bathymodiolus azoricus разновозрастной серии (n=22) с длиной раковины от 24 до 116 мм. В мягких тканях с увеличением длины раковины (т.е. на более зрелых стадиях онтогенеза), существенных изменений в содержании микроэлементов (кроме Hg) не отмечается. В карбонатном скелете раковин с возрастом содержание Fe, Mn, Ni и Cu уменьшается почти в 10-20 раз (рис. 14). Для остальных микроэлементов каких-либо
6>
Достарыңызбен бөлісу: |