Даниэль Канеман Думай медленно… решай быстро



бет25/108
Дата23.06.2016
өлшемі2.51 Mb.
#155357
түріРеферат
1   ...   21   22   23   24   25   26   27   28   ...   108

   Закон малых чисел


  Мое сотрудничество с Амосом в 1970-е годы началось с дискуссии об утверждении, что люди обладают интуитивным статистическим чутьем, даже если их статистике не обучали. На семинаре Амос рассказал нам об исследователях из Мичиганского университета, которые в целом оптимистично относились к интуитивной статистике. Меня эта тема очень волновала по личным причинам: незадолго до того я обнаружил, что я – плохой интуитивный статистик, и мне не верилось, что я хуже других.
   Для психолога-исследователя изменчивость выборки – не просто странность, это неудобство и помеха, которая дорого обходится, превращая любое исследование в игру случая. Предположим, вы хотите подтвердить гипотезу, что словарный запас шестилетних девочек в среднем больше, чем словарный запас мальчиков того же возраста. В объеме всего населения гипотеза верна, у девочек в шесть лет словарный запас в среднем больше. Однако девочки и мальчики бывают очень разными, и можно случайно выбрать группу, где за метной разницы нет, а то и такую, где мальчики набирают больше баллов. Если вы – исследователь, такой результат вам дорого обойдется, поскольку, потратив время и усилия, вы не подтвердите правильность гипотезы. Риск снижается только использованием достаточно большой выборки, а те, кто работает с маленькими выборками, отдают себя на волю случая.
   Риск ошибки в каждом эксперименте оценивается при помощи довольно простой операции, однако психологи не пользуются вычислениями для определения размера выборки, а принимают решения в соответствии с собственным, зачастую ущербным, пониманием. Незадолго до дискуссии с Амосом я прочитал статью, прекрасно иллюстрирующую типичные ошибки исследователей. Автор отмечал, что психологи сплошь и рядом используют настолько маленькие выборки, что рискуют не подтвердить верные гипотезы с вероятностью 50 %! Ни один разумный исследователь не примет такой риск. Правдоподобным объяснением казалось то, что решения психологов относительно разм ера выборок отражали господствующие интуитивные заблуждения о диапазоне изменчивости.
   Меня поразили содержащиеся в статье объяснения, проливающие свет на проблемы с моими собственными исследованиями. Как и большинство психологов, я постоянно использовал слишком маленькие выборки и часто получал бессмысленные, странные результаты, оказывавшиеся артефактами, которые порождал сам метод моих исследований. Мои ошибки были тем постыднее, что я преподавал статистику и умел вычислять размер выборки, необходимый для снижения риска неудачи до приемлемого уровня. Но я никогда этим не занимался при планировании экспериментов и, подобно другим исследователям, верил традиции и собственной интуиции, не задумываясь о проблеме всерьез. К моменту, когда Амос посетил мой семинар, я уже осознал, что моя интуиция не работает, а во время самого семинара мы быстро пришли к выводу, что ошибаются и оптимисты из Мичиганского университета.
   Мы с Амосом решили выяснить, есть ли среди исследователей такие же наивные глупцы, как я, и допускают ли те же ошибки ученые, обладающие математическими знаниями. Мы разработали опросник с описанием реалистичных исследований и успешных экспериментов. Опрашиваемые должны были определить размеры выборок, оценить связанные с этими решениями риски и дать советы гипотетическим аспирантам, планирующим научно-исследовательскую работу. На конференции Общества математической психологии Амос провел опрос присутствующих (включая авторов двух учебников по статистике). Результаты оказались очевидны: я был не одинок. Почти все респонденты повторили мои ошибки. Выяснилось, что даже эксперты недостаточно внимательны к размеру выборки.
   Первая статья, написанная мной в соавторстве с Амосом, называлась «Вера в закон малых чисел». В ней шутливо пояснялось, что «…интуитивная оценка размера случайных выборок, похоже, удовлетворяет закону малых чисел, гласящему, что закон больших чисел с тем же успехом применим и к малым». Также мы включили в статью настойчивую рекомендацию для исследователей относиться к своим «статистическим предчувствиям с недоверием и при любой возможности заменять впечатления вычислениями».

   Предпочтение уверенности сомнению

   По результатам телефонного опроса 300 пенсионеров, 60 % поддерживают президента.



   Если бы вас попросили изложить смысл этого предложения в трех словах, как бы вы это сделали? Почти наверняка вы бы сказали: «Пенсионеры поддерживают президента». Эти слова передают суть истории. Опущенные детали опроса (то, что его проводили по телефону, и количество респондентов) сами по себе неинтересны, они просто описывают исходные условия. При другом размере выборки вы все равно сказали бы то же самое. Конечно, абсурдное количество – 6 или 60 миллионов – привлекло бы внимание. Но если вы профессионально этим не занимаетесь, вы, возможно, почти одинаково отреагируете на выборку из 1 50 и 3000 человек. Фраза «Люди не уделяют должного внимания размеру выборки» именно это и означает.
   Сообщение об опросе содержит информацию двух типов: историю и ее источник. Естественно, вы больше обращаете внимание на саму историю, чем на достоверность результатов. Однако, если достоверность невысока, сообщение не усвоят. Услышав, что «Группа сторонников провела некорректный и тенденциозный опрос, чтобы показать, что пенсионеры поддерживают президента», вы, конечно же, отвергнете эту информацию, результаты опроса не станут частью того, во что вы верите. Вместо этого некорректный опрос и его фальшивые результаты превратятся в очередную историю о вранье политиков. В таких явных случаях вы можете принять решение не верить. Но достаточно ли хорошо вы ощущаете разницу между «Я прочел в The New York Times…» и «Я слышал возле кулера…»? Умеет ли ваша Система 1 различать степени веры? Принцип WYSIATI предполагает, что нет.
   Как уже упоминалось, Систе ма 1 не склонна к сомнениям. Она подавляет неоднозначность и самопроизвольно составляет когерентные истории. Если сообщение не отвергается немедленно, то связанные с ним ассоциации будут распространяться так, как если бы оно было верным. Система 2 способна сомневаться, поскольку может одновременно рассматривать несовместимые варианты. Однако поддерживать сомнения труднее, чем уверяться в чем-либо. Закон малых чисел – проявление общей склонности к уверенности вместо сомнений, которая под разными видами еще не раз появится в следующих частях.
   Сильная предрасположенность верить, что маленькие выборки точно представляют все население, означает и нечто большее: мы склонны преувеличивать последовательность и когерентность увиденного. Излишняя вера исследователей в результаты нескольких наблюдений сродни эффекту ореола, часто возникающему у нас чувству, что мы знаем и понимаем человека, о котором нам, по сути, известно мало. Система 1 предвосхищает факты, составляя по об рывочным сведениям полную картину. Механизм для поспешных выводов ведет себя так, будто верит в закон малых чисел. В целом он создает чересчур осмысленную картину реальности.



Достарыңызбен бөлісу:
1   ...   21   22   23   24   25   26   27   28   ...   108




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет