Агроөнеркәсіп кешені дамуындағы днқ технологиялар


Дәріс 14. Патогенді микроорганизмдерді диагностикалаудағы ДНҚ технологиялары



бет16/19
Дата15.02.2022
өлшемі0.83 Mb.
#455385
1   ...   11   12   13   14   15   16   17   18   19
Лекция ДНК

Дәріс 14.

Патогенді микроорганизмдерді диагностикалаудағы ДНҚ технологиялары
Сабақтың жоспары

1. Өсімдік аурулары және ДНҚ технологиясын қолдану арқылы АӨК дамыту

2. Жануарлар аурулары және ДНҚ технологиясын қолдану арқылы АӨК дамыту

Начало формы

Ауыл шаруашылығында өсімдіктің атмосфералық азотты өзіне жинақтап алуы — үлкен мәселе. Осыған байланысты 1970 жылдары азотты фиксациялауға қабілеті жоқ пішен таяқшасына азотты жинақтай алатын, басқа бір бактерияның гені салынып, азотты жинақтау қасиетіне ие болды. Мед. саласында жаңа гендерді енгізу арқылы тұқым қуалайтын ауруларды емдеуге болады. Қазіргі кезде ауру адамдардан зат алмасудың 1000-нан аса әр түрлі тұқым қуалайтын өзгерістері табылған.
Гендік (генетикалық) инженерияны – молекулалық және клеткалық инженерия белгілі бір мақсатпен жасанды айқын қасиеттері бар генетикалық материалдарды алдын ала құрастырып, оларды басқа клеткаға енгізіп, көбейтіп, зат алмасу процесін өзгеше жүргізу. Бұл әдіспен организмдердегі тұқым қуалайтын информацияны көздеген мақсатқа сай өзгертіп, олардың геномдарын белгілеген жоспармен қайта құруға болады.
Гендік инженерия ол функциональдық активті генетикалық құрылымдарды рекомбинаттық (ата-ана екі ДНК молекулалары арасынан пайда болған будан) ДНК молекулалары түрінде қолдан құрастыру. Гендік инженерияның мәні жеке гендерді бір организмнен алып, басқа организмге көшіріп орналастыру.
Бұл рестриктаза деген фермент пен лигаза ферментінің ашылуы негізінде мүмкін болды. Рестриктаза ферменті ДНК молекуласын нақты белгіленген жерлерін кесіп алады да, осылай фрагменттерді (рестрикция сайттарын) түзеді. Ал лигаза ферменті гетерогендік ДНК-ның фрагменттерін бүтін тігеді. Құрамында шығу тегі әр түрлі ДНК-лары бар молекуланы рекомбинаттық молекула деп атайды.
Рекомбинаттық ДНК = прокариоттардың және / немесе вирустардың ДНК-ы (вектор) + эукариоттардың ДНК-ы (бөтен ДНК).
Вектордың көмегімен эукариоттардың бөтен ДНК-ы клеткаға еніп, геномға интеграциялана алады. Сонымен, прокариоттар мен вирустардың зерттелетін ДНК молекулалары нақты белгіленген жерден кесіліп, одан кейін бұл жерге эукариоттардың қажетті бөтен гені енгізіледі, осылайша рекомбинаттық (гибридтік) ДНК түзіледі.
Түзілген рекомбинаттық ДНК тірі клеткаға енгізіледі, жаңа геннің экспрессиясы (көріну күші) басталғаннан соң, клетка сол ген белгілеген белокты синтездей бастайды. Сонымен, клеткаға рекомбинаттық ДНК молекуласы түрінде жаңа генетикалық информацияны енгізіп, соңында жаңа белгісі бар организмді алуға болады. Мұндай организмді трансгендік немесе трансформацияланған организм дейді. Осылайша, гендік инженерияның дамуына негіз болған молекулалық биология мен молекулалық генетиканың мынадай жетістіктері бар:
Рестриктазалар мен лигаза ферменттерінің ашылуы;
Гендерді химиялық заттарды және ферменттерді қолдану арқылы синтездеу;
Бөтен генді клеткаға тасымалдаушы-векторларды пайдалану;
Бөтен генге ие болған клеткаларды таңдап, бөліп алу жолдарының ашылуы.
Алғашқы рет рекомбинаттық ДНК 1972 жылы АҚШ-та П.Бергтің лабораториясында жасалды.

Конец формы

Начало формы

Гендік инженерияда гендерді тасымалдау арқылы түраралық кедергілерді жойып, қажетті тұқым қуалайтын белгілерді бір организмнен екіншісіне беру іске асырылады.


Инженерия түсінігінің өзі құрастыру деген мағынаны береді. Олай болса, гендік инженерия организмнің жағымды белгілерін сақтай отырып, оған арнайы мақсатта қосымша жаңа қасиет беріп, генотипін қалаған бағытта өзгерту болып табылады. Гендік инженерияны ауыл шаруашылығында, медицинада пайдалану арққылы өсімдіктер, жануарлар мен микроорганизмдердің қажетті гендерінің қызметін басқаруға мүмкіндік туды.
Соңғы жылдары гендік инженерияның көмегімен бактериялық клеткадан вирустық ауруларды емдеуге қолданылатын интерферон және өсу гормоны - соматотропин нәруыздарын алуға қол жетті. Қант диабеті ауруын емдеуге қолданылатын инсулин гормонын алудың арзан жолы табылды. Бұрын инсулин жануарлардың ұйқы безінен өте қымбатқа түсетін жолмен алынатын еді. Қазіргі кезде гендік инженерия әдісімен ішек таяқшасы бактериясынан бөлініп алынатын болды.
Жануарлар селекциясында гендік инженерияға байланысты аустралиялық ғалымдар гендер құрамына өсу гормонының генін енгізе отырып, кәдімгі шошқаға қарағанда екі еседей жылдам өсетін шошқаның жаңа қолтұқымын шшығарды.
Ағылшын ғалымдары геномына қанның ұюын тездететін ген енгізілген қой алды. Мұндай қойдан бөліп алынған арзанға түсетін препаратты гемофилия ауруын емдеуде қолданады.
Бұршақ тұқымдас өсімдіктердің тамыр жүйесінде ауадағы азотты тұтатын қасиеті бар бүйнек бактериялары селбесіп тіршілік ететіні белгілі. Олар топырақты азотты қосылыстармен байытады. Қазіргі кезде осы бактериялардағы азотты тұтатын генді астық тұқымдастар геномына енгізу жұмыстары жүргізілуде.
Ол лабораториялық әдіс арқылы генетикалық жүйелер мен тұқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияның және молекулалық биологияның жетістіктерімен байланысты. Бұл атаудың екі түрі қолданылады: «генетикалык инженерия» және «ген инженериясы». Соңғы кезде «генетикалық инженерия» жалпылама түрде қолданылып жүр, ген инженериясы да осының ішіне кіреді.+ Генетикалық инженерия дегеніміз клеткаларда өздігінен көбейе алатын, белгілі бір затты синтездеуге қабілетті тұқым қуалаушылық материалдарын қолдан жасайтын молекулалық биолгияның жаңа саласы. Ген инженериясының дүниеге келген уақыты 1972 жыл деп есептеледі. Сол жылы АҚШ-та П. Бергтің тобы алғаш рет пробиркада үш түрлі (маймылдың SV 40 онкогендік вирусының толық геномы, λ-бактериофагынын геномының бөлшегі және Е. соlі (ішек таяқшасы) лактозалық оперонының гені) микроорганизмнің ДНҚ-ларының фрагменттерінен жаңа гибридтік ДНҚ құрастырды. Бірақ маймылдың рак вирусының, бактериофагтың және ішек бактериясының гендік ДНҚ-ларынан құрастырылған   ол гибридтік ДНҚ-ның клетка ішінде ойдағыдай  жұмыс істей алатындығы тексерілмеді, себебі құрамында рак вирусының нуклеин қышқылы болғандықтан ғалымдар тәуекелге бармады. Клеткада жүмыс істей алатын гибридтік ДНҚ-ны 1973 жылдары алғаш С. Коэн, Д. Хелински мен Г. Бойер құрастырды. Олар басқа организмнен бөліп алған ДНҚ фрагментін (генін) бактерия плазмидасының  құрамына  еңгізді. Ол плазмидадағы  бөтен гендердің алғаш рет жаңа организм ішінде жұмыс істей алатынын көрсетті. Соның артынша-ақ дүние жүзінің көптеген лабораторияларында жүмыс істей алатын әр түрлі плазмидалар алынды. Совет елінде ондай бөтен гені бар плазмида академик А.А. Баевтың басшылығымен жасалды. Ген инженериясы деп рекомбинантты ДНҚ-лар жасап, оларды басқа тірі клеткаларға еңгізуді айтады. Ген инженериясы шешетін мәселелер: генді химиялық немесе ферментті қолдану жолымен синтездеу; әртүрлі   организмнен   алынған   ДНҚ   фрагменттерін   бір-бірімен жалғастыру (ДНҚ рекомбинанттарын алу); бөтен генді жаңа клеткаға векторлық ДНҚ аркылы жеткізу және олардың қызмет жасауын қамтамасыз ету; клеткаларға гендерді немесе генетикалық жүйелерді еңгізу және бөтен белокты синтездеу; бөтен генге ие болған клеткаларды таңдап бөліп алу жолдарын ашу.

Конец формы



Начало формы

Ген инженериясында генді мынадай әдістермен алуға болады: клеткадағы ДНҚ-дан тікелей кесіп алу; химиялық жолмен синтездеу; аРНҚ-дан кері транскриптаза арқылы синтездеу. Перед сном натирайте вены обычным... Обычная студентка вычислила хитрую систему и стала ... Не знаете что делать с пигментными пятнами? Это все из-за паразитов! Скорей Псориаз? Болезнь лечится за 3 дня, если мазать кожу простым... Бірінші әдіс ген инженериясының дамуының алғашқы кезеңінде қолданыла бастады. Белгілі организмнің ДНҚ-сын тугелімен  әр түрлі рестриктазалармен үзіп, әр түрлі фрагменттер алады. Содан кейін оны клетка ішінде «аркалап» кіргізе алатын сақиналы (дөңгелек) плазмидалармен жалғайды, Ол үшін плазмиданы да рестриктазалармен  үзеді, оған әлгі ДНҚ фрагменттерін қосып жалғап, қайтадан бүтін плазмидалар алады. Бұл плазмидалардың әрқайсысының құрамында бір немесе бірнеше бөтен ДНҚ фрагменті (гені) болады, Одан кейін ол плазмидаларды қайтадан бактерияға еңгізеді. Осының нәтижесінде бактерия клеткасының әрқайсысында басқа организм генінің, бір түрі болады, Осындай әртүрлі бөтен гендері бар бактерия клеткаларының жиынтығын немесе коллекциясын «гендер банкі» кейде «гендер кітапханасы» деп атайды. Зерттеушілер ол банкіден уақытында қажет белоктың генін жаңадан тауып алады. Осындай гендер банкі қазір Ресейде, Батыс Европада және АҚШ-та жасалған. Химиялық жолмен жасанды генді 1969 жылы Г. Корана синтездеген. Бірақ оған жалғасқан промотор тізбегі мен транскрипцияны аяқтайтын кодондар болмағандықтан, ол клетка ішінде ешбір қызмет көрсете алмады. Гендрді химиялық синтздуге нуклеин қышқылдарындағы нуклеотидтердің орналасу тәртібін анықтау әдісін тапқаннан кейін  ғана  мүмкіндік  туды. Бұл  әдістерді  тапқан  Д. Джильберт пен  Ф. Сэнгер. Ғалымдар  генді  белоктың құрамындағы амин қышқылдарына  қарап  отырып  синтездеуді де үйренді, (3 нуклеотид — 1 кодон — 1 амин қышқылы деген заңдылық бойынша). Соның ішінде қолдан синтезделген ең ұзын ген, адамның самототропин (өсу) гені, ол 584 нуклеотидтен тұрады. Оны бактериядағы басқа геннің промоторына жалғастырып, плазмида арқылы бактерия клеткасына еңгізді. Соның нәтижесінде бактерияның бір клеткасы 3 млн-ға дейін адам самототропин молекуласын жасай алатын болды. Адам инсулині де химиялық жолмен синтезделіп,  осы айтылған жолмен бактерияға еңгізілді. Инсулин генін 40 аса алты мүшелік олигонуклеотидтерден тұратын түрінде бөліп алып, кейін ДНҚ-лигазаның кемегімен біріктірген. Алынған үзындығы 271 және 286 нб қос тізбекті полинуклеотидтер плазмидаға еңгізілді. Оған қоса бұдан молекулалардың экспрессиясын камтамасыз ететін, ДНҚ-ның реттеуші учаскелері де енгізілді. Клонданған (өркендетілген) гендер проинсулиннің синтезін кодтады, ал оны қарапайым химиялық өңдеу арқылы қос А және В полипептидтік тізбектен тұратын, ұзындығы 21 және 30 амин қышқылдарының қалдықтарынан тұратын, өзара дисульфидтік байланыстары бар белсенді гормонға айналдыруға болады. Жасанды әдіспен генді ферменттік синтезге сүйене отырып, кері транскрипция механизмнің көмегімен алуға да болады. Бұл механизм РНҚ-ға тәуелді ДНҚ-полимеразаның немесе кері транскриптазаның (ревертазалар) белсенділігіне байланысты. Бұл фермент ең алғаш он-когендік (залалды ісік) вирустарды зерттегенде табылған. Фермент әртүрлі РНҚ-ларда, синтетикалық полинуклеотидтерді қоса, ДНҚ-ның көшірмесін құра алатын қабілеті бар. Ревертазаның көмегімен, сәйкес иРНҚ-ның қатысуымен, іс жүзінде кез келген бөліп алуы жақсы игерілген генді алуға болады. Бұл әдісті белгілі бір тканьдарда өте қарқынды транскрипцияланатын гендерге қолдану тиімді. Осындай әдістермен адамның, сүтқоректілер мен құстардың кодтаушы глобиндері, өгіздің көз хрусталигінің (көз жанары) белогы, жұмыртқа белогы, жібек фибрионы (талшығы) және тағы басқа гендер алынды да өркендетілді. Ферментті синтездеп, пробиркада РНҚ молекуласынан ДНҚ генінің комплементарлы тізбегін жазып алуды транскрипция дейді. Синтездеу үшін қолданылатын жүйе құрамында ДНҚ-ға кіретін төрт нуклеотид, магний ионы, кері транскриптаза ферменті және генмен кодталған көшірмесін алатын иРНҚ бар. иРНҚ-дан кері транскрипта-за, оған сәйкес ДНҚ тізбегін синтездеп, сол ферменттің көмегімен ДНҚ-ның екінші тізбегі синтезделеді. Осының нәтижесінде иРНҚ-да синтезделген ген құрылымына ұқсас ген пайда болады. Осы әдіспен көптеген елдің лабораториясында бірнеше гендер тобы алынды. Гендік инженерияда жасанды гендер ситездеумен қатар рекомбинантты молекуласын құрастыру үшін табиғи гендер де пайдаланылады. Ол гендерді векторлық ДНҚ молекуласына байланыстыру бактериялық ферменттер рестриктазалар арқылы іске асырылады. Бактерия клеткасындағы қорғанштық қызмет атқаратын рестриктазалар клеткаға енген бөтен ДНҚ-ны жою мақсатыкда оны бірнеше бөліктерге кесіп тастауға қабілетті келеді. Кесілген ДНҚ фрагменттері шамалы уақыттан кейін комплементарлық принцкп бойынша лигаза ферментінің көмегімен қайта жалғанып, ДНҚ-ның сақина тәрізді пішіні қалпына келеді. Осы әдіспен түрлі клеткалардан немесе хромосома учаскелерінен алынған ДНҚ кесінділерін жалғастырып рекомбинантты ДНҚ молекуласын алуға мүмкіндік туды. Векторлар ретінде ДНҚ-дан басқа да фогтар, вирустар, пазмидтер, эписомдар қолданылады. Генетикалық инженерияның алдына қойған мақсаты алуан  түрлі, өйткені бұл әдісті  пайдалану  турлі деңгейде жүреді. Олар: организмдік деңгей клеткалық деңгей гендік  деңгей Организмдік деңгейде генетикалық  инженерияны қолданудың мысалы ретінде аллофендік жануарларды (тышқанды) алуға болады. Бірнеше аналық тышқанның жатырынан дамудың 8 бластомерлік кезеңіндегі ұрықтарды шығарып алып,  түтікше ішінде ол бластомерлерді бір-бірінен  ажыратады, Түрлі особътардан алынған осы бластомерлерді араластырып түзілген қоспа бластуланы дамуының  гаструлалық кезеңінде бір аналық тышқанның жатырына енгізіп дамуды жалғастырады. Дүниеге келген аллофенді тышқанның фенотипінде барлық ата-аналарна тән белгілер қайталанғанымен, бірқатар  өзіндік  жаңа қасиеттер де пайда болады. Ендеше, ересек жағдайда ұлпалары бір-біріне иммунологиялық жағынан сәйкес келмейтін особьтардың клеткаларынан осы жолмен қалыпты дамып  жетіліп, тіршілік етуге  қабілетті аллофендік ұрпақ алуға мүмкіндік туады. Клеткалық  деңгейде әр түрге жататын организмдердің сомалық клеткаларын будандастыру арқылы бірнеше генотиптен  құралған  бұдан

Конец формы

Гендердің жасушаларындағы әрекетін басқаратын репликация және транскрипция сигналдарын оларға қамтамсыз етеді.

Бөтен генді жасуша ішінде тасымалдап алып баратын арнаулы ДНҚ молекуласын вектор дейді. оган мынадай талаптар қойылады:



  1. өз алдына репликациялану, яғни жасуша ішінде бөтен генді алып кірген соң жасушамен бірге немесе өз алдына көбейе алатын болуы керек, немесе вектор жасуша хромосомасының кұрамына еніп, сонымен бірге ұрпақ жасушаларға беріліп отыруы керек;

  2. трансформацияланған жасушаларды анықтау үшін оның ерекше гентикалық белгілері болуы керек;

  3. құрамында рестриктазалар үзе алатын нуклеотидтер тізбегі болуы керек және репликацияға қабілетін жоғалтпау керек;

  4. векторға орналастырылған бөтен ген оның атқаратын қызметін бұзбауы керек, ал вектор болса, ол да енгізілген геннің ішінде дұрыс реттеліп жұмыс істеуін қамтамасыз ететін болуы керек;

  5. вектордың көлемі кішігірім болуы керек.

Әдетте, кұрылымдық ген өте қысқа болып келеді. Оны бірден көп мөлшерде бөліп  алу қиын. Сондықтан оның көшірмелерін жетерліктей көбейту керек. Генді клондау үшін бактериялар қолданылады. Мысалы, өте жақсы тексерілген, зияны жоқ, кең таралған бактерия ішек таяқшасы. Керекті ген орналастырылған векторды бактерияға енгізеді. Бактерия тез бөлінетіндіктен, оның ішіндегі вектор да, ген де бактериямен бірге көбейеді. Ақырында өскен бактерия биомассасынан вектор мен ген, яғни рекомбинанттық ДНҚ көп мөлшерде бөлініп алынады.

Генетикалық материалды жасушаларға енгізу әдістері  әжептеуір көп, атап айтқанда:

1. Жасушаларды агробактериялармен бірге өсіру;

2. Пропластарға ДНҚ-ны ПЭГ және Са көмегімен енгізу.



  1. ДНҚ-ны липосомаларға салып тасымалдау.

  2. Электропорация.

  3. Электрофорез.

  4. Микроинъекция.

  5. Баллистикалық әдісі.

  6. Жапырақ бөлшегі әдісі.

Қосжарнақты өсімдіктерге агробактериялардың ауру жұктыруы табиғаттта кең   таралған құбылыс. Тәжірибеде   өсімдік жасушаларынан трансформациясын in vitro өткізген қолайлы. Т-ДНҚ жүйесін қолданып бүтін өсімдіктер мен протопластарда көптеген эксперименттер жасалған. Трансформацияланған кейбір өсімдіктер ұрпақтары алынған. Оларға бөтен ген енгізу аркасында пайда болған жаңа қасиеттер Мендель заңы бойынша тұрақты тұқым қуалайды. Вируленттік агробактерияларды протопластармен арласа бірге өсіргенде трансформация өту үшін жасуша қабығының қайта құрылуы қажет. Бұл құбылыс жасуша қабығының түзілуін тежейтін заттарды қолдану және де бактериялардың протопластарға қосылуын тежейтін ЭДТА қолдаану арқылы дәлелденген. Қара алқа протопластарын А.rhizogenes бактериясымен бірге өсіргенде жақсы нәтиже алынған. Трансформацияланған каллустардың 70%-ынан регенерант өсімдіктер шыққан.

Бұл әдістің модификациясы, ол протопластарды бактериялардың сферопластарымен бірге өсіру. Қызғылт қабыршөптің протопластары агробактериялардың октопиндік Ті-плазмидасы бар сферопластарымен ПЭГ және поливинил спирті көмегімен қосылған. Одан кейін протопластар гормондары жоқ қоректік ортаға көшірілген. Өсіп шықкан жасуша колонияларында октопиннің түзілетіндігі анықталған, яғни жасуша хромосомаларының құрамында Т-ДНҚ болғандығы дәлелденген. Осы бағытта протопластарға ПЭГ жэне Са көмегімен Т-ДНҚ-ны тікелей енгізу тәжірбиелері жасалған. Трансформацияланған жасушалар гормондары жоқ ортада өсіріліп сұрыпталған.

Жалаңаш ДНҚ протопластарға тасымалданғанда, оны қорғау үшін ДНҚ-ны липосомаларға салады, әйтпесе жасушадағы нуклеаза ферменттері оны ыдыратып жібереді. Протопластар фюзоген көмегімен липосомалармен оңай қосылады немесе эндоцитоз арқылы олардың ішінде сіңеді. Бұл әдіспен ДНҚ-ны жасушаларға қай өсімдік түрі болса да енгізуге болады. Канамицинге төзімділік гені бар плазмида теріс заряды бар липосомаларға салынып, ПЭГ көмегімен темекінің мезофильдік протопластарымен қосылған. Канамицинге төзімді: жасушалардан трансформацияланган регенерант өсімдіктер алынған. Бұл әдістің артықшылығы, арнайы ДНҚ молекуласын құрастырудын кажеті жоқ, ал кемістігі - трансформациялау жиі өтпейді.

Бұл әдістің тиімділігін арттыру жолы бар, ол электропорация, яғни жасуша мембранасын электрлік токпен тесу. Көптеген зерттеушілер жоғары кернеу бар өте қысқа мерзімде өтетін разрядты қолданады. Электропорация  әдісімен  гендер  қосжарнақты  өсімдіктердің  және  де даражарнақты өсімдіктердің протопластарына тасымалданған. Тасымалдау нәтижесін бір-екі тәуліктен кейін байқауға болады. Электрошоктан тірі калған жасушалар антибиотикке төзімді келеді.

Осы әдістермен протопластарға ДНҚ енгізілгенде, өсімдік геномына оның бірнеше көшірмелері тіркесуі мүмкін. Шамасы, олар хромосоманың бір сайтына орналасады. Протопластардан регенераттарды алу кейде қиын болады, сондықтан электропорация әдісін қолданып бүтін жасушаға бөтен генді енгізу тиімді көрінеді. Мысалы, темекінің мезофилл жасушаларына электропорацияны қолданып темекі теңбіл кеселі вирусының РНҚ-сы енгізілген. Әсіресе бұл әдісті пісіп жетілген тозаң жасушаларына қолдану тиімді. Бүтін өсімдіктерге бөтен ДНҚ енгізу тәжірбиелері нәтиже берген жоқ. Сондықтан өсімдіктердің трансформациясын табысты өткізу жолында ізденістер жалғастырылуда.

Жануар жасушаларының трансформациясы микроинъекция арқылы нәтижелі өтеді. Өсімдік жасушаларында ДНҚ ерітіндісін құю техникалық жағынан едәуір қиын. Ол үшін сыртқы диаметрі 2 мкм инелер мен арнаулы микроманипулятор қолданылады. Әрбір протопластқа инъекция жасалатын ДНК ерітіндісін көлемі 10-10мл болады. Темекінің жапырақ мезофиллінің және каллустың протопласатарына канамицинге төзімділік гені бар плазмидалар инъекция арқылы енгізілген. Содан кейін протопластар 0,5-1,0 мм микроколониялар болып көбейгенше әдеттегі ортада өсіріледі, кейін канамицинь бар селективтік ортаға көшірілген. Алынған төзімді жасушалар линияларының геномында енгізілген бөтен ДНҚ фрагменттері болғандығы блот-гибридизация әдісімен анықталады. Бұл тәжірбие көрсеткендей, микроинъекция әдісі өсімдік клеткаларын трансформациялау үшін нәтижелі, әсіресе тура ядроға жасаған микроинъекция.

Сонғы жылдары баллистикалық әдіс кеңінен пайдаланып келеді. Алтын 
вольфрам микробөліктерінің бетіне кальцийді, полиэтиленгликольді пайдаланып ДНҚ-ны қондырады, одан кейін сол микробөліктермен арнайы қондырғы арқылы өсімдік жасушаларын анықтайды. Металл бөліктері 300-600 м/с жылдамдығымен жасуша қабығын жэне мембраналарды тесіп өтеді. Жасушаға енген ДНҚ белгісіз жолмен ДНҚ-на кіреді. Бұл әдіспен әр түрлі өсімдіктерді, соның ішінде даражарнақтылар мен қылқан жапырақтыларды трансформациялауға болады. Реципиент ретінде әр түрлі ұлпалар қолданылады.

Трансформацияның  әдісінің тағы бір түрі - хромосомалық инженерия. 


Ол бір мезетте көптеген тіркескен гендерді бірге тасымалдауға жол 
ашады. Бұл   бағыттың маңызы, өсімдіктердің   құнды қасиеттері мультигендік, яғни көп гендермен кодталатын болады. Жоғарыда аталған әдістердің кемшілігі, ол протопластарды бөліп алу қиыншылықтары. Регенерация процесі ұзаққа созылатындықтан, өсіп шыққан өсімдіктерде мутациялар, хромосомалар кұрылысында өзгерістер болуы әбден мүмкін.

Сонымен, генетикалық ақпаратты өсімдікке енгізу әдістері аз емес, және де оларды жетілдіру жұмыстары жалғасып жатыр. Осы бағыттағы соңғы бір жетістік - «жапырақ бөлшегі» әдісі. Ол бүтін өсімдіктің деңгейінде гендер экспрессиясын анықтауды жеңілдетеді және тездетеді. Бұл әдісте агробактериялардың гендерді тасымалдау қабілеті эксплант ретінде қолданатын жапырақ бөлшектерінің регенерацияға кабілетімен сайма-сай келеді. Бұл әдіс темекіде, қызанақта, қарбызда сынап көрілген.

Темекінің жапырақ дисктеріне ісік туғызатын қабілеті жоқ. Ті-плазмидасының құрамында канамицинге төзімділік гені бар. А tumefaciens штаммын жұқтырған. Жапырақ дискілері Петри табақшаларында екі күн бойы бактериялармен бірге өсірілген. Кейде олар 50 мг/л канамицині бар селективтік ортаға көшірілген. Дисктерде жапырақ регенерациясы 2-4 апта өткен соң басталады. 4-7 аптадан кейін тамырлар пайда болады. Канамцин бар ортада өскен трансформанттардың геномында Т-ДНҚ бар блог-гибридизация әдісі арқылы дәлелденді. Бұл әдістің артықшылыгы, гендердің тасымалдануы, өсімдіктер регенерациясы және трансформанттар селекциясы бір жүйеде жалғаса өтуі. Бұл әдіс агробактерияпар жұқтыратын және жапырақтан регенерациясы жүретін өсімдіктердін барлық түрлеріне жарамды.

С.Өмірұлы  мен М.Қарабаев   жүгеріні   гентикалық трансформациялау жүргізудің  тиімді  жүйесін  жете  зерттеп дайындады. Ол эмбриогендік протопластарға  тікелей   ДНҚ   енгізу   арқылы   ұрықтана алатын регенеранттарды алуға негізделген. Вектор ретінде pMGPI  жэне pN29 плазмидалары пайдаланылған. Оларға қолдан жасалған промотор тігілді. Ол промотор бидайдың а-амилаза генінің қысқартылған промоторынан және   ТҚТВ   358-промоторының     қос        энхансерлік элементінен құрасты-рылған еді. Жүгері   клеткаларында тасымалданатын негізгі   ген ол В-D-глюкуронидаза     ферментінің     құрылымдық     гені     болған. Бүл ферменттерді  ыдыратады. Векторлардың құрамында селективтік маркер ретінде неомицинфосфотрансфераза мен фосфотрицин-ацетил-трансфераза гендері болған. Бірінші фермент неомицин тектес антибиотиктердің активтігін тежеген, екіншісі-фосфотрицин гербицидтің активтігін тежеген. Сондықтан, бұл гендер бар клеткалар антибиотик пен гербицид косылған ортада тірі қалған яғни трансформацияланған клеткаларды сұрыптауға мүмкін болған. Эмбриогендік клеткалар суспензиясынан алынған протопластарға ПЭГ көмегімен рекомбинаннттық ДНҚ енгізілген. Трансформаттарды кейін канмицин мен фосфотрицинге төзімділігі аркылы сұрыпталған. Жасушаларды х-glис бояумен өңдегенде, трансфор-мацияланғандары GUS-гені көмегімен сол затты ыдырату нәтижесінде көк түсті болып шыққан. Боялған жасушалар мен колонияларын регенерант өсімдіктер алынған. 11 млн протопластардан 140 трансгендік өсімдіктер алынған. Олар нормалы өсімдіктер болған, басым көпшілігінде морфологиялық өзгерістер немесе дамуында ауытқулары болмаған. Айқас тозаңданудан кейін олардан кұнды ұрықтар алынған. Тасымалданған гендер тұқым қуалаған, келесі буындарда бар және GUS -гені жоқ өсімдіктер болған. Жүгері өсімдіктерінің әр түрлі ұлпаларында GUS-геннің экспрессиясы гистохимиялық әдісімен зерттеледі. Сонда жас жапырақтар, жапырақтағы түтік шоқтардың қоршау жасушалары, эпидермис және мезофилл жасушалары, сабақ түтік шоқтары, тамыр оймақшасы және тамыр түтік шоқтары көк түске боялды. Осы тәсілдерді қолданып жасушалық деңгейде бидайдың тұракты генетикалық трансформантары алынды. Бұл жұмыс астық тұқымдастар жасушалары мен өсімдіктерін генетикалық өзгерту және қайта құрастыру үшін биоинженерия әдістерін қолдануға болатындығын көрсетті.





Достарыңызбен бөлісу:
1   ...   11   12   13   14   15   16   17   18   19




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет