УДК 820
ББК 84(7Сое) А35
Азимов Айзек
А35 Человеческий мозг. От аксона до нейрона /
Пер. с англ. А.Н. Анваера. - М.: ЗАО Центр-полиграф, 2003. - 461 с.
ISBN 5-9524-0470-7
Из этой замечательной книги вы узнаете о строении и тайнах центральной нервной системы человека, об анатомии, физиологии и сложнейших биохимических процессах, протекающих в головном мозге. В книге много интересных и остроумных историй об открытиях и феноменах, гипотезах и перспективах науки психобиохимии!
УДК 820
ББК 84(7Сое)
© Перевод, ЗАО
«Центрполиграф», 2003
©Художественное оформление, ЗАО «Центрполиграф», 2003
ISHN 5-9524-0470-7
ЧЕЛОВЕЧЕСКИЙ МОЗГ
От аксона до нейтрона
СОДЕРЖАНИЕ
Введение
Глава 1. ГОРМОНЫ
Организация
Секретин
Аминокислоты
Строение и функция
Пептидные гормоны
Глава 2. ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
Железы без протоков
Инсулин
Структура инсулина
Глюкагон
Андреналин
Глава 3. ЩИТОВИДНАЯ ЖЕЛЕЗА
Йод
Тироксин
Тирсотропный гормон
Паратиреоидный гормон
Гормоны задней доли гипофиза
Глава 4. КОРА НАДПОЧЕЧНИКОВ
Холестерин
Другие стероиды
Кортикоиды
АКТГ
Глава 5. ПОЛОВЫЕ ЖЕЛЕЗЫ И РОСТ
Гормоны растений
Гормон роста
Метаморфоз
Андрогены
Эстрогены
Гонадотропины
Глава 6. НЕРВЫ
Электричество и ионы
Клеточная мембрана
Поляризация и деполяризация
Нейрон
Ацстилхолин
Глава 7. НЕРВНАЯ СИСТЕМА
Цефализация
Хордовые
Приматы
Человекообразные обезьяны и человек
Глава 8. ГОЛОВНОЙ МОЗГ
Спинно-мозговая жидкость
Кора головного мозга
Электроэнцефалография
Базальные ганглии
Гипоталамус
Глава 9. СТВОЛ ГОЛОВНОГО МОЗГА И СПИННОЙ МОЗГ
Мозжечок
Черепно-мозговые нервы
Спинно-мозговые нервы
Автономная нервная система
Глава 10. ОЩУЩЕНИЯ И ВОСПРИЯТИЕ
Тактильные ощущения
Боль
Вкус
Запах
Глава 11. УШИ
Слух
Наружное и среднее ухо
Внутреннее ухо
Эхолокация
Вестибулярное чувство
Глава 12. ГЛАЗА
Свет
Глазное яблоко
Внутреннее устройство глаза
Сетчатка
Цветовое зрение
Глава 13. РЕФЛЕКСЫ
Ответ
Азбука рефлекса
Инстинкты и импринтинг
Условный рефлекс
Глава 14. СОЗНАНИЕ
Обучение
В царстве разума и вне его
Психобиохимия
Заключение
ВВЕДЕНИЕ
В 1704 году Южные моря пересекал корабль, на борту которого служил шотландский матрос Александр Селкирк. Он поссорился с капитаном и попросил высадить себя на необитаемом острове Мас-а-Терра - одном из островов архипелага Хуан-Фернандес в южной части Тихого океана, приблизительно в -100 милях к западу от Центрального Чили.
Матрос пробыл на острове с октября 1704-го по февраль 1709 года, почти четыре с половиной года, до того как его подобрало проходившее мимо судно. Селкирк неплохо перенес пребывание на острове, вернулся к службе на море и вышел в отставку в должности помощника капитана. В одной из лондонских газет в 1713 году была напечатана история его добровольного одиночества.
То была поистине очаровательная повесть.
Легенда заинтриговала английского писателя Даниэля Дефо - одного, среди прочих, - который взял на себя труд написать художественную версию высадки человека на необитаемый остров и в какой-то степени улучшил историю. Его моряк попал па остров в Карибском море (скорее всего, на Тобаго) и прожил там двадцать восемь (!) лет.
Имя моряка и название романа известно всем - это Робинзон Крузо. Роман стал классическим, его читали два с половиной столетия, и будут читать впредь, пока на земле будут существовать грамотные люди. Отчасти интерес к книге обусловлен мастерским умением Дефо описывать детали и полной достоверностью написанного. Но самое интересное, как мне кажется, заключается в самом сюжете - вызове, который человек в одиночку бросает грозной вселенной.
Крузо - обыкновенный человек, обуреваемый страхами, тревогами и слабостью, который, несмотря на них, тяжким трудом, великой изобретательностью и большим упорством строит для себя разумную и даже комфортабельную жизнь в дикой глуши. Сделав :)то, он побеждает один из самых сильных человеческих страхов - страх одиночества. В обществах, где законом запрещены физические пытки, самые тяжкие преступления караются одиночным заключением.
Если Робинзон Крузо очаровывает и восхищает нас, то восхищение это, несомненно, смешано с ужасом. Кто из нас добровольно согласился бы поменяться местами с Робинзоном, даже если бы нам позволили захватить с собой весь набор городских удобств? Дело в том, что, хотя общество, состоящее и одного-единственного человека, мыслимо (но крайней мере, в течение одного поколения), оно все же является в высшей степени нежелательным. Для того чтобы сделать общество жизнеспособным, надо довести его численность до некоторого предела, руководствуясь принципом «чем больше, тем веселее». Дело здесь не в компании или в сексуальном удовлетворении, что само по себе уже требует достаточно большой численности сообщества, а в том, что редкий человек может в одиночку выполнять все необходимое для жизни общества. Один человек обладает достаточной мышечной силой для того, чтобы валить деревья, другой человек наделен изобретательностью, позволяющей ему руководить постройкой дома, а третий имеет терпение и вкус, делающие его незаменимым поваром.
Представим себе самое примитивное сообщество. Даже в нем на повестку дня встанет вопрос о специализации. В число умельцев попадут люди, которые разбираются в лекарственных растениях, специалисты по разведению скота и умелые огородники. Список можно продолжить. И хотя такое многочисленное сообщество имеет неоспоримые преимущества по сравнению с одиноким Робинзоном Крузо, оно все же не лишено и недостатков. Один человек, конечно, может страдать от одиночества, но он, по крайней мере, делает то, что решил сам. Два человека могут поссориться, что, скорее всего, и произойдет, а большое сообщество неизбежно расколется на клики, которые, вместо того чтобы тратить энергию па борьбу с окружающей средой, займутся междоусобными распрями. Другими словами, увеличивая численность общества, мы, по необходимости, должны включить в список специалистов самого главного человека - племенного вождя. Сам он может не работать, но свою общественную задачу он выполняет, организуя работу других. Он определяет очередность дел, решает, что и когда должно быть сделано и какую работу, напротив, надо прекратить. Он улаживает ссоры и, если надо, силой принуждает стороны к миру. По мере роста численности общества задача организатора усложняется в большей степени, чем задачи любых других специалистов. На смену племенному вождю является иерархия начальников, правящий класс и полчища бюрократов.
Все эти закономерности мы можем наблюдать и на биологическом уровне.
Существуют организмы, состоящие из одной-единственной клетки, и их можно сравнить с человеческим обществом, состоящим из одного человека (за исключением того, что клетка может делиться и таким образом до бесконечности продлевать свое существование, а существование человека-одиночки ограничено сроком его жизни). Такие одноклеточные организмы живут и процветают в паши дни, конкурируя с многоклеточными организмами, и кто знает, быть может, простейшие организмы останутся жить, когда их многоклеточные соперники закончат свое земное существование.
По аналогии можно сказать: даже в паши дни существуют отшельники, живущие в пещерах, уживаясь рядом с миром, где люди живут в мегаполисах, подобных Нью-Йорку и Токио. Мы можем оставить философам рассуждения на тему, чье положение предпочтительнее, по большинство из нас считает само собой разумеющимся, что лучше быть человеком, чем амебой, и лучите жить в Нью-Йорке, чем в пещере.
Переход от одноклеточной формы существования к многоклеточной, должно быть, начался, когда клетки после деления оставались прикрепленными друг к другу. Именно это и происходит сейчас. Одноклеточное растение, называемое сине-зеленой водорослью, делится, и вновь образованные клетки остаются склеенными друг с другом. Водоросли представляют собой гигантские колонии таких клеток. Это, конечно, ни в коем случае не многоклеточный организм. Каждая клетка в колонии функционирует самостоятельно, независимо от своих соседей, с которыми она просто рядом расположена.
Истинная многоклеточность требует установления «клеточного сообщества», с потребностями, которые превосходят потребности отдельно взятых клеток. В многоклеточных организмах индивидуальные клетки специализируются, чтобы сосредоточить усилия на каких-то частных функциях, в то время как другие, даже жизненно важные, функции ослабевают или даже исчезают полностью. Такая клетка, естественно, теряет способность жить самостоятельно и выживает только благодаря тому, что другие клетки, выполняющие иные функции, снабжают ее всем недостающим. Можно даже рассматривать отдельную клетку многоклеточного организма как особь, паразитирующую на целостном организме.
(Не будет большой натяжкой, если мы проведем аналогию, утверждая, что граждане большого современного города стали насколько специализированными существами, что окажутся беспомощными, если их предоставить самим себе. Человек, который комфортно чувствует себя в большом городе, который выполняет свои специализированные функции и зависит от разветвленных служб мегаполиса, - контролируемый другими, такими же специализированными, но по другому профилю гражданами, дойдет до животного состояния и погибнет, если окажется на месте Робинзона Крузо.) Но если триллионы клеток специализированы и если их функции организованы ко всеобщему благу организма как целого, то, продолжая пашу аналогию с человеческим обществом, можно утверждать, что должны существовать клетки, которые специализируются на организации. Это громадная работа. Она намного сложнее в простейшем из многоклеточных организмов, чем управление самым сложным и многочисленным человеческим сообществом.
В «Организме человека»1 я достаточно подробно обсудил строение и функции различных органов тела. Эти функции, очевидным образом, тесно переплетаются между собой. Различные участки пищеварительного тракта в строгой последовательности выполняют свои, отведенные им функции. Сердце бьется в результате согласованной работы его отдельных частей. Кровеносные сосуды соединяют между собой отдаленные части тела и выполняют сотни задач, не выходя за пределы мельчайших капилляров. Легкие и почки представляют собой сложные, но эффективно работающие площадки, на которых происходит контакт организма с окружающей средой.
1 «Организм человека» был опубликован в 1983 году, и книгу, которую им сейчас читаете, можно считать ее продолжением.
В этом устройстве ясно просматривается четкая организация, о которой я умолчал в «Организме человека». Однако в этой книге я не стану об этом умалчивать. Действительно, эта книга посвящена только и исключительно организации, которая единственная делает возможной жизнь многоклеточного организма, и в особенности организации, превращающей человеческое тело в динамическое живое существо, а не в простое скопление клеток. Головной мозг - не единственный орган, вовлеченный в эту организацию, но он - самый важный из них. По этой причине я назвал книгу «Головной мозг человека», хотя в ней рассматривается и многое другое. Вопреки Евклиду, смею утверждать, что целое больше, чем сумма его частей, и если в «Организме человека» я рассматривал части, то в «Головном мозге человека» я постараюсь рассмотреть целое.
Глава 1
ГОРМОНЫ
ОРГАНИЗАЦИЯ
Даже первобытный человек ощущал потребность в отыскании некоего объединяющего и организующего принципа, согласно которому работает организм. Что-то движет рукой или ногой, хотя сами по себе эти части тела являются всего лишь слепыми орудиями и ничем больше. Естественным первым побуждением было определить ту часть тела, без которой жизнь становится невозможной. Руку или ногу можно отделить от туловища, но при этом человек не всегда лишается жизни: она, по сути, не изменяется, хотя такая травма может физически значительно изуродовать человека. Другое дело - дыхание. У мертвеца есть и руки и йоги, присущие живому человеку, но у пего нет дыхания. Еще важнее то, что если человека заставить прекратить дышать насильно, то через пять минут он умрет, хотя никаких других видимых повреждений ему не нанесли. И самое главное, дыхание было невидимой и неосязаемой материей, исполненной таинства, которого только и можно было ожидать от такой эфирной субстанции, как жизнь. Поэтому не удивительно, что корень слова «дыхание» стал во многих языках обозначением сути жизни, или того, что мы должны называть душой. Еврейские слова «нефеш» и «руах», греческое «пневма», латинские «spiritus» и «anima» обозначают одновременно дыхание и суть жизни. Еще одной подвижной частью организма, существенно необходимой для жизни, является кровь - такая же живая жидкость, как дыхание - живой газ. Потеря крови приводит к потере жизни, и из ран мертвеца прекращается кровотечение. Библия в своих предписаниях относительно священных ритуалов ясно указывает древним израильтянам (несомненно, что такие же обычаи существовали и у соседних народов), что кровь - первооснова жизни. Поэтому мясо нельзя есть до тех пор, пока из него не выпущена вся кровь, так как кровь представляет собой жизнь, а есть живую плоть религия запрещает. Библия (Быт. 9:4) говорит об этом совершенно недвусмысленно: «Только плоти с душою ее, с кровью ее, не ешьте».
От крови к сердцу оставалось сделать всего один шаг. У мертвеца сердце не бьется, и этого оказалось достаточно, чтобы уравнять сердце с жизнью. Это понимание до сих пор сохранилось в нашем обыденном ощущении, - все эмоции сосредоточены в сердце. Сердце у нас «разбивается», «черствеет», «каменеет» и «замирает».
Дыхание, кровь, сердце - все это движущиеся объекты, которые становятся неподвижными после смерти. Проникнуть взором за эту очевидность было делом невероятно сложным.
Даже на заре человечества печень рассматривалась как чрезвычайно важный орган (и это действительно так, хотя и по другим причинам, нежели считали в древности). Жрецы искали знамений и прорицания будущего в форме и строении печени жертвенных животных.
Может быть, благодаря своей значимости для религиозных ритуалов, или из-за своих впечатляющих размеров (это самый большой орган внутренностей), или из-за большого кровенаполнения, а возможно, по всем этим причинам, многие начали считать печень седалищем жизни. Вероятно, не простое совпадение, что слово «печень» отличается от слова «жизнь» всего на одну букву (по-английски «печень» - liver, «жить» - live). На заре культуры считали, что печень отвечает за эмоции, чему в нашем языке до сих пор сохранилось множество свидетельств. Селезенка, другой наполненный кровью орган, согласно воззрениям древних, выполнял сходные функции. Слово «селезенка» до сих пор служит в английском языке синонимом слов «гнев» и «дух противоречия».
Сегодня нам может показаться весьма странным, что головной мозг не рассматривался в качестве места обитания жизни, в этом вопросе его просто игнорировали; более того, его и не думали считать организующим центром организма. В конце концов, только у человека он так непропорционально велик по сравнению с головным мозгом других животных. Однако надо заметить, что мозг не является подвижным органом, наподобие сердца. Он не наполнен кровью, как печень или селезенка. В довершение всего, он находится на самой окраине тела и спрятан в массивный костный футляр. Когда жрецы потрошили заколотых для жертвоприношения животных, они пристально рассматривали не головной мозг, а только внутренние органы, преимущественно брюшной полости.
Аристотель, самый знаменитый из древних мыслителей, полагал, что головной мозг предназначен для охлаждения крови, протекающей через него. Таким образом, важнейший орган оказался у под облитым воздушному кондиционеру. Современный взгляд на головной мозг как на вместилище разума, который с помощью нервов воспринимает ощущения и посылает побуждения к движению на периферию, не стал общепризнанным вплоть до XVIII века.
Нервная система, как таковая, была исследована только к концу XIX века, и не только как таковая, по и как нечто большее. Нервная система была признана организующей сетью всего тела. Подросшее человечество могло легче осознать эту идею, поскольку к тому времени люди привыкли к сложным схемам электрических цепей. Нервы организма были уподоблены проводам электрических контуров. Перерезка нерва, ведущего к глазу, приводила к слепоте именно этого глаза, перерезка нерва, ведущего к бицепсу, приводила к параличу этой мышцы. Это было па удивление похоже на то, как если перерезать провод, то остановится питаемая этим проводом часть электрической машины. В свете такого восприятия не кажется удивительным предположение, что только нервная сеть управляет организмом. Например, считалось, что, когда пища покидает желудок и переходит в тонкую кишку, происходит гальванизация поджелудочной железы, и секрет ее пищеварительных соков начинает изливаться в двенадцатиперстную кишку. Пища, вступающая в кишечник, буквально купается в пищеварительных соках и, таким образом, переваривается и усваивается.
Казалось, был найден образчик великолепной организации. Если бы поджелудочная железа секретировала свои соки постоянно, то это был бы напрасный их расход, так как большую часть времени пища в кишке отсутствует. С другой стороны, если поджелудочная железа секретирует свои соки прерывисто (как в действительности и происходит), то секреция должна быть идеально синхронизирована с поступлением пищи в кишку, в противном случае не только сок будет израсходован зря, но и пища останется непереваренной.
Согласно воззрениям ученых XIX века, прохождение пищи из желудка в топкий кишечник активировало нерв, который затем передавал сигнал в головной (или спинной) мозг. Этот последний в ответ отправлял команду поджелудочной (панкреатической) железе посредством другого нерва, в ответ на эту вторую команду поджелудочная железа начинала выделение пищеварительных соков. Эти воззрения господствовали до начала XX века, когда, совершенно неожиданно, выяснилось, что, кроме нервной системы, организм обладает и другой, регулирующей его функции, системой.
СЕКРЕТИН
В 1902 году два английских физиолога, Уильям Мэддок Бэйлис и Эрнест Генри Старлинг, изучали способы, которыми нервная система управляет деятельностью кишечника в процессе пищеварения. В опытах на экспериментальных животных они, подчиняясь ясной логике, перерезали все нервы, идущие к поджелудочной железе. Казалось в высшей степени вероятным, что лишенная иннервации поджелудочная железа вообще перестанет выделять пищеварительные соки независимо от того, поступает пища в двенадцатиперстную кишку или нет.
К удивлению Бейлиса и Старлинга, именно этого-то и не произошло. Вместо этого, поджелудочная железа продолжала как ни в чем не бывало выделять, как ей и положено, пищеварительные соки в нужный момент времени. Как только пища касалась слизистой оболочки кишки, панкреатическая железа начинала изливать в ее просвет свой сок. Оба физиолога знали, что содержимое желудка имеет кислую реакцию, потому что в пищеварительном секрете желудка содержится довольно большое количество соляной кислоты. Ученые ввели немного соляной кислоты в тонкую кишку - без всякой пищи, - и денервированная поджелудочная железа начала продуцировать сок. Стало быть, как оказалось, для полноценной работы поджелудочной железе не нужны ни нервы, ни пища, нужна только кислота, а самой кислоте не надо было соприкасаться с поджелудочной железой, достаточно было коснуться слизистой оболочки двенадцатиперстной кишки.
Следующим шагом было иссечение участка двенадцатиперстной кишки у только что забитого животного и погружение этого участка в соляную кислоту. Небольшое количество кислотного экстракта набрали в шприц и с помощью тонкой иглы ввели в вену другого животного. Его поджелудочная железа сразу отреагировала и начала выделять пищеварительный сок, хотя животное перед опытом не кормили. Вывод был ясен. Слизистая оболочка кишки реагировала на запускающее действие кислоты, продуцируя химическое вещество, которое поступало в кровь. Кровоток доставлял это вещество по системе кровообращения ко всем участкам тела, в каждый орган, включая поджелудочную железу. Когда вещество достигало поджелудочной железы, оно каким-то образом стимулировало выделение ею пищеварительного сока.
Бэйлис и Старлииг назвали вещество, продуцируемое слизистой оболочкой кишки, секретином (secreto - «отделяю», лат.)1.
1 В этой книге я буду придерживаться практики, которой уже придерживался и книге «Организм человека», помещая скобках правила произношения слов, которые, возможно, незнакомы читателю. Я также буду включать описание смысла ключевого слова, от которого образован термин, помечая бук вами «лат.» термины, образованные от латинских корней, и «греч.» - термины, образованные от древнегреческих корней
В данном случае слово «отделение» обозначает тот факт, что клетка образует особое вещество и отделяет это вещество от себя, выбрасывая его в кровь, в кишку или на поверхность тела. Предполагается, что секреция служит полезным целям, что, например, верно в отношении поджелудочной железы. Когда же секретируемый материал просто выводится из организма, то говорят об экскреции («выделяю наружу», лат.). Таким образом, выделение мочи - это экскреция. Вещество назвали секретином, поскольку оно стимулировало секрецию. Это был первый пример эффективной организации, которая создается с помощью химических сообщений, рассылаемых с кровью, а не с помощью электрических сигналов, распространяющихся по нервам. В неформальном научном обиходе такие вещества, как секретин, называют иногда «химическими мессенджерами».
Более формальный термин был предложен в 1905 году Бэйлисом в курсе его лекций. Он предложил название «гормон» («побуждаю», греч.). Как вы видите, гормон, секретируемый в одном органе, - это некое вещество, которое стимулирует и активирует деятельность другого органа. Название было принято, и с тех пор стало ясно, что регуляция деятельности организма осуществляется на двух уровнях - с помощью электрической системы головного мозга, спинного мозга, нервов и чувствительных органов и с помощью химической системы различных гормонов и органов, продуцирующих гормонов.
Хотя система электрической регуляции функций организма была открыта раньше, чем химическая система, в этой книге я буду придерживаться обратного порядка и сначала рассмотрю химическую систему регуляции, поскольку из двух систем она менее специализированная и более древняя.
Растения и одноклеточные существа, лишенные каких бы то ни было признаков нервной системы, реагируют, тем не менее, на химические стимулы. Решив придерживаться такой очередности, давайте теперь более пристально рассмотрим секретин. Поняв его действие и свойства, мы сможем прийти к пониманию принципов, которые можно приложить к механизмам действия других, более известных гормонов. Например, может возникнуть вопрос о том, каким образом прекращается действие гормона. Содержимое желудка поступило в двенадцатиперстную кишку. Высокая кислотность этого содержимого стимулирует продукцию секретина. Секретин поступает в кровеносное русло и стимулирует панкреатическую секрецию. Все идет очень хорошо, но настает момент, когда поджелудочная железа выделила весь сок, который был нужен для пищеварения. Как остановить секрецию гормона?
Во-первых, надо сказать, что панкреатический сок обладает щелочной реакцией (щелочь - раствор, обладающий свойствами, противоположными свойствам раствора кислоты, одно нейтрализует другое. Если слить вместе растворы кислоты и щелочи, то в результате получится смесь, не обладающая ни кислотными, ни щелочными свойствами). Так как панкреатический сок смешивается с нищей, то кислотные свойства последней, обусловленные желудочным соком, ослабевают. По мере уменьшения кислотности гаснет и искра, стимулирующая образование панкреатического сока.
Другими словами, действие секретина запускает последовательность событий, которые в конечном итоге прекращают образование секретина. Таким образом, образование секретина есть процесс самоограничивающийся. Он похож на действие термостата, который регулирует работу мазутной топки в подвале. Когда в доме холодно, термостат включает топку, и температура поднимается до той точки, в которой термостат выключает топку. Такой процесс управления называется управлением по механизму отрицательной обратной связи. Это общий термин для обозначения процесса, посредством которого результаты, заданные в некоем контрольном механизме, подаются на этот механизм, который потом регулирует деятельность системы в зависимости от результатов. В электрических цепях мы говорим о входе и выходе, в биологических системах речь идет о стимуле и ответе или реакции. В нашем случае успешного ответа достаточно для уменьшения стимуляции.
Очевидно, что такой регуляции по механизму обратной связи не достаточно. Даже если секретин больше не образуется, то его количество, которое осталось в кровеносном русле, будет и дальше подстегивать поджелудочную железу?
Но природа предусмотрела этот случай. В организме существуют энзимы1, специально созданные для того, чтобы катализировать разрушение гормонов. Энзим находится в крови, которая обладает способностью ускорять расщепление молекул секретина, делая этот гормон неактивным. Энзимы часто называются по тому веществу, на которое они действуют, с добавлением к его названию окончания -аза. Так, энзим, о котором я только что упомянул, называется секретиназой.
1 Энзимы - это белки, которые проявляют свойства катализаторов, - они ускоряют протекание отдельных реакции в малых объемах. Это вес, что нам надо знать для целей настоящей книги. Если вас интересует природа и механизм действия энзимов, то я отсылаю вас к своей книге «Жизнь и энергия» (1962)
Следовательно, в организме происходит настоящая гонка между образованием секретина в той оболочке кишки и его разрушением секретиназой. Пока слизистая оболочка работает с полной нагрузкой, концентрация секретина в крови достигает уровня, при котором происходит стимуляция поджелудочной железы. Когда же слизистая перестает работать, то не только прекращается образование новых молекул секретина, но и разрушается весь секретин, оставшийся в крови. Вот таким образом поджелудочная железа включается и выключается в одно касание, с точностью отлично отлаженного автомата, - при этом вы даже не догадываетесь о его существовании.
АМИНОКИСЛОТЫ
Может возникнуть законный вопрос: что такое секретин? Известна ли его природа, или это просто название, данное неизвестному веществу? Ответ таков: природа этого вещества известна, хотя и не во всех деталях.
Секретин - это белок, а белки состоят из крупных молекул, каждая из которых содержит сотни, тысячи, а иногда и миллионы атомов. Сравните это с молекулой воды (Н2 О), которая состоит из трех атомов - 2 атомов водорода и 1 атома кислорода; или с молекулой серной кислоты (H2SO4), которая содержит 7 атомов - 2 атома водорода, 1 атом серы и 4 атома кислорода.
Исходя из этого можно понять, что химик, желающий знать точную структуру белка, столкнется с практически неразрешимой задачей. К счастью, все дело несколько облегчается тем фактом, что атомы внутри белковой молекулы организованы в подгруппы, называемые аминокислотами.
При обработке в мягких условиях кислотами, или щелочами, или определенными энзимами молекулы белков удастся расщепить на аминокислоты, а не на отдельные атомы. Аминокислоты являются малыми молекулами, построенными из 10 - 30 атомов, поэтому их довольно легко изучать.
Например, было обнаружено, что все аминокислоты, выделенные из белковых молекул, принадлежат к одному семейству химических соединений, которые можно записать одной общей формулой:
Расположенная в центре структурной формулы латинская буква «С» обозначает атом углерода (С - химический символ, обозначающий элемент углерод). Справа к углероду, как показано выше, присоединена комбинация из четырех атомов СООН, в которой представлены 1 атом углерода, 2 атома кислорода и 1 атом водорода. Такая комбинация придает всей молекуле кислотные свойства и называется карбоксильной группой. Слева к центральному атому углерода присоединена комбинация из трех атомов, которая представлена одним атомом азота и двумя атомами водорода. Это аминогруппа, в химическом отношении она родственна веществу, называемому «аммиаком». Поскольку формула содержит аминогруппу и кислотную группу, то все соединения такого типа носят название аминокислот.
Кроме того, к центральному атому углерода присоединен атом водорода, который в аминокислоте представляет сам себя, и функциональная группа R, которая представляет боковую цепь. Все аминокислоты отличаются друг от друга именно составом боковой цепи, или R. Иногда боковая цепь устроена очень просто, она может вообще состоять из одного лишь атома водорода, по это простейший случай. У некоторых аминокислот боковая цепь может быть весьма сложной, и количество атомов в ней может доходить до восемнадцати. Для целей нашего изложения нам не обязательно знать в точности строение боковой цепи каждой аминокислоты, достаточно понимать, что боковые цепи аминокислот отличаются между собой, и у двух разных аминокислот не может быть одинаковых боковых цепей.
Аминокислоты соединяются друг с другом, образуя белки, при этом аминогруппа одной кислоты соединяется с карбоксильной группой соседней кислоты. Таким образом, между собой соединяется множество аминокислот, образуя длинный скелет. По сторонам этого скелета выступают боковые цепи аминокислот, при этом неповторимая, уникальная последовательность этих цепей образует типы белков, отличающихся между собой составом этих последовательностей.
Во всем великом множестве белков встречается более двух дюжин аминокислот, но наибольшее распространение имеет 21 из них. Вот они:
1. Глицин («сладкая» (греч.), названа из-за ее сладкого вкуса).
2. Алании (название выбрано, вероятно, для благозвучия). (По другому толкованию, эта аминокислота названа так потому, что ее впервые выделили из желточного мешка, который в эмбриологии называется «алантоис». - Примеч. пер.)
3. Валин (название происходит от валериановой кислоты, которой валил близок по химическому строению).
4. Лейцин («Белый» (греч.), назван так потому, что впервые был выделен в виде белого кристаллического порошка).
5. Изолейцин (изомер лейцина; изомерами называют пары веществ, которые содержат одинаковое количество одних и тех же атомов и отличаются между собой разной последовательностью соединения этих атомов в молекулах).
6. Пролин (укороченное производное от «пирролидин». Атомы в молекуле пролина соединены приблизительно так же, как в пирролидине).
7. Фенилаланин (молекула аланииа, к которой присоединена группа атомов, называемая фенильной).
8. Тирозин («сыр» (греч.), названа так потому, что впервые была получена из сыра).
9. Трипотофан («трипсин-зависимая»; эта аминокислота названа так потому, что ее впервые обнаружили во фрагментах белков, расщепленных под действием энзима трипсина).
10. Серии («шелк» (лат.), эта аминокислота впервые была обнаружена в шелке).
11. Треонии (название дано потому, что по структуре эта аминокислота сходна с сахаром треозой).
12. Аспарагин (впервые был обнаружен в спарже [asparagus altilis]).
13. Аспарагиновая кислота (по химическому строению напоминает аспарагин; отличие между этими двумя соединениями заключается в том, что у аспарагиновой кислоты в боковой цепи вместо амидной группы [CONHJ находится карбоксильная группа [СООН], которая и сообщает ей кислые свойства).
14. Глютамин (впервые был обнаружен в клейковине [gluten (англ.)]).
15. Глютаминовая кислота (отличается от глютамина тем же, чем аспарагиновая кислота отличается от аспарагина).
16. Лизин («разрывающий» (греч.), эта аминокислота была впервые выделена из белка, предварительно расщепленного на несколько субъединиц).
17. Гистидин («тканевый» (греч.), название дано потому, что эта аминокислота была впервые выделена из тканевых белков).
18. Аргинин («серебро» (греч.), название дано потому, что эта аминокислота была впервые выделена в соединении с атомом серебра).
19. Метионин (боковая цепь содержит метильную группу, присоединенную к атому серы.
20. Цистин («пузырь» (греч.), аминокислота была впервые выделена из камня мочевого пузыря).
21. Цистеин (аминокислота, по химическому строению похожая на цистин).
Я буду очень часто использовать эти названия в дальнейшем изложении. Для того чтобы сэкономить место, позвольте мне привести сокращенные наименования для каждой из аминокислот. Эти сокращения предложил в 30-х годах американский биохимик немецкого происхождения Эрвин Бранд. Сокращения эти легко запомнить, так как они состоят из первых трех букв названия каждой аминокислоты.
Глицин |
gly
|
Алании
|
ala
|
Валин
|
val
|
Лейцин
|
leu
|
Аспарагин
|
asp-NH2
|
Аспарагиновая кислота
|
asp
|
Глютамин
|
glu-NH2
|
Глютамиповая кислота
|
glu
|
Изолейцин
|
ileu
|
Пролип
|
pro
|
Фенилаланин
|
phe
|
Тирозин
|
tyr
|
Триптофан
|
try
|
Серии
|
ser
|
Треонин
|
thr
|
Лизин
|
lys
|
Гистидин
|
his
|
Аргинин
|
arg
|
Метионин
|
met
|
Цистин
|
cy-S-
|
Цистеин
|
cy-S-H
|
Совершенно ясно, почему сокращения ileu, aspNH2, gluNH, содержат больше трех букв. Сокращения для цистина и цистеина выглядят куда более загадочными и заслуживают разъяснения, тем более что немного позже вам станет ясна их важность.
Цистин - это, если можно так выразиться, двойная аминокислота. Представьте себе два центральных углеродных атома, каждый из которых соединен с карбоксильной и аминогруппой. Боковая цепь, присоединенная к одному из центральных атомов углерода, направляется к боковой цепи другого центрального углеродного атома и срастается с ней. В месте этого сращения встречаются два атома серы. В химических символах мы можем изобразить цистин так: cy-S-S-cy. Два атома серы образуют между собой ковалентную связь, которая и удерживает вместе две части этой двойной аминокислоты.
Каждая половина цистина может участвовать в создании отдельной аминокислотной цепи. Для наглядности представьте себе сиамских близнецов, из которых каждый, взявшись за руки с другими людьми, образует свою цепь. Обе эти цепи оказываются связанными между собой тканью, которая связывает сиамских близнецов.
Подобным же образом две аминокислотные цепи, каждая из которых содержит половину цистина, удерживаются вместе его S-S связями (которые называются дисульфидными мостиками). Поскольку химиков часто интересует строение единичной аминокислотной цепи, они могут сконцентрировать свое внимание на половинке молекулы цистина, которая представлена в цепи. При рассмотрении структуры того или иного белка чаще всего принимают в расчет именно половину цистина, которую в этом случае обозначают символом cy-S-.
Для того чтобы разделить соединенные дисульфидными мостиками аминокислотные цени, надо разорвать S-S связи, присоединив к атомам серы по атому водорода. После такого соединения связь между атомами серы разрывается. Из S-S получается -S-H и H-S-. Таким образом, одна молекула цистина превращается в две молекулы цистеина (названия этих аминокислот очень похожи, но для того, чтобы произнести название половинки, надо напрячься и тщательно артикулировать средний слог - «цис-те-ин»). Для демонстрации разницы между цистином и цистеином последний обозначают символом cy-SH.
СТРОЕНИЕ И ФУНКЦИЯ
Если теперь я вернусь к секретину и опишу его как белковую молекулу, то мы сразу кое-что узнаем о его строении. Более того, это небольшая белковая молекула с. молекулярным весом всего лишь 5000. (Это означает, что молекула секретина весит в 5000 раз больше, чем легчайший из атомов - атом водорода.)
Если мы примемся обсуждать молекулы других соединений, то вес 5000 может показаться достаточно большим. Например, молекула воды весит 18, молекула серной кислоты - 98, а молекула столового сахара - 342. Однако, учитывая, что молекулярный вес даже средних по размерам белковых молекул составляет от 40 000 до 60 000, не являются редкостью белки с весом 250 000, и известны белковые молекулы с весом несколько миллионов, можно видеть, что молекулярный вес 5000 можно считать просто маленьким.
Такие молекулярные веса вообще являются правилом для белковых гормонов. Молекулы гормонов должны быть перенесены из клеток, где они образуются, в кровеносное русло. В процессе такого переноса гормон должен путем диффузии пройти сквозь мембрану клетки и топкую стенку мельчайшего кровеносного сосуда - капилляра. Удивительно уже то, что молекулы с весом 5000 дальтон умудряются это сделать, но трудно надеяться, что то же самое могут сделать более крупные молекулы, - нельзя же, в самом деле, требовать от них так много! Действительно, молекулы белковых гормонов настолько малы для белков, что такие гормоны часто не называют белками. Речь в данном случае идет о пептидных гормонах.
Дело в том, что когда аминокислотные цепи белковых молекул расщепляются на более мелкие цепочки аминокислот под действием энзимов пищеварительного тракта, то эти цепочки получают название пептидов («переваренные», греч.). В биохимии вошло в обычай выражать размеры аминокислотных цепочек малых размеров греческими числительными, которые пишутся перед словом «пептид» для обозначения числа содержащихся в нем аминокислотных остатков. Например, дипептид - это цепочка из двух аминокислот, трипептид - из трех, тетрапеитид - из четырех и т. д.
Если число аминокислот в пептиде превышает дюжину, но не доходит до сотни, то такое соединение называют полипептидом («поли» по-гречески «много»). Секретин и другие гормоны подобной природы построены из аминокислотных цепей, содержащих больше дюжины, но меньше сотни аминокислотных остатков, и поэтому их иногда называют не белковыми, а полипептидными гормонами.
Сказав, что секретин является полипептидным гормоном, по логике вещей надо сделать следующий шаг и решить, какие аминокислоты содержатся в его молекуле и сколько каждой из них. К сожалению, это не слишком простая задача. Секретин образуется в весьма малых количествах, и при выделении его из ткани двенадцатиперстной кишки попутно выделяется еще несколько белков. Присутствие этих примесей, естественно, затрудняет анализ.
Однако в 1939 году секретин удалось получить и кристаллах (только чистый белок может быть получен в такой форме). После анализа кристаллов секретина было выяснено, что каждая его молекула состоит из следующих аминокислот, трех остатков лизина, двух аргинина, двух пролина, одного гистидипа, одного глютаминовой кислоты, одного аспарагиновой кислоты и одного метионина. Таким образом, молекула секретина содержит 11 видов аминокислот, а всего в ней содержится 36 аминокислотных остатков. Используя сокращения Бранда можно записать формулу секретина следующим образом:
lys3arg3pro2his1glu1asp1met1X25
Буквой «X» обозначена неизвестная аминокислота.
Но даже определив все аминокислоты, содержащиеся в молекуле секретина, мы все равно столкнулись бы с проблемой выяснения точной структуры его молекулы. Нам осталось бы выяснить, в какой последовательности расположены аминокислоты в полипептидной цепи секретина. Если, допустим, вы знаете, что в некоем четырехзначном числе есть две шестерки, четверка и двойка, то все равно остается неопределенность относительно того, с каким числом вы имеете дело. Это может быть 6642, 2646, 4662 или любое из ряда других сочетаний. В математике существуют стандартные способы вычисления возможных сочетаний, которые можно построить из различных наборов единиц, и результаты таких вычислений потрясают воображение. Положим, что состоящая из 36 аминокислот молекула секретина содержит по две из восемнадцати различных аминокислот. Общее количество возможных последовательностей превысит число 1 400 000 000 000 000 000 000 000 000 000 000 000.
Это может показаться невероятным, но дело обстоит действительно так. И это, заметьте, касается мелкой белковой молекулы. Положение с белковыми молекулами средней величины намного сложнее, и этот факт может дать вам представление о том, с какими трудностями столкнулись биохимики, пытаясь выяснить строение белковых молекул.
Еще более поразительный факт, однако, заключается в том, что после Второй мировой войны биохимикам удалось разработать гениальную технологию, с помощью которой можно было отныне определять точную последовательность аминокислотных остатков в белковых молекулах (находя одну-единственную возможность из бесчисленных триллионов возможных комбинаций).
Выделение сложности структуры белковой молекулы, только что продемонстрированной на примере секретима, вызывает удивление перед способностью клетки вырабатывать такие сложные молекулы правильно, выбирая одну структуру из всех возможных. В действительности это ключевой химический процесс в живых тканях, подробности которого были частично раскрыты в течение последнего десятилетия.
Даже если мы допустим, что клетка может вырабатывать правильно построенные молекулы белка, то может ли она с нуля делать это столь быстро, что следовые количества кислоты в желудке могут вызвать настоящий поток секретина в кровеносное русло? При всем уважении к клетке такого трудно ожидать, и действительно начинается выброс секретина в кровь отнюдь не с нуля.
Секретин - продуцирующие клетки слизистой оболочки двенадцатиперстной кишки - готовят молекулы вещества, называемого просекретином («предсекретина»), находясь в состоянии покоя. Просскретин запасается в клетке и хранится наготове. Для того чтобы превратить неактивную молекулу просекретина в активный секретин, очевидно, требуется небольшое изменение в его молекуле. Таким образом, стимулирующее действие кислоты сводится к небольшому изменению структуры готовой молекулы и не требует сложной работы по синтезу полипептидной цепи. Логично предположить, что просекретин - это относительно большая молекула, слишком большая, чтобы пройти сквозь клеточную мембрану, и это обстоятельство, так сказать, надежно замуровывает ее внутри клетки. Приток кислоты вызывает расщепление молекулы просекретина на более мелкие фрагменты, и эти фрагменты - а это и есть секретин диффундируют в кровеносное русло. Просекретин, таким образом, напоминает блок перфорированных почтовых марок. Для того чтобы отправить письмо, надо оторвать марку от блока, но целые блоки покупают и храпят дома до того момента, когда потребуется марка.
В связи с этим может возникнуть еще один вопрос: каким образом гормоны (и секретин, в частности, уж коли я заговорил об этом конкретном гормоне) реализуют свой ответ? Как ни странно это звучит, но несмотря на более чем полувековую историю изучения и удивительные успехи, которых биохимия добилась на всех направлениях, ответ па этот вопрос остается полной загадкой. Эта загадка касается не только секретина, но и практически всех других гормонов. К настоящему времени точно не установлен механизм действия ни единого гормона. Вначале, сразу после открытия секретина и подобных ему гормонов, было обнаружено, что это мелкие белковые молекулы, оказывающие свое специфическое действие в очень малых концентрациях (всего лишь 0,005 мг секретина - менее чем одной пятимиллионной части унции - достаточно для ответной реакции поджелудочной железы собаки), и поэтому было высказано предположение, что они действуют так же, как энзимы. Энзимы тоже являются белками и действую; в ничтожно малых концентрациях. Энзимы обладают способностью ускорять специфические реакции, и вполне возможно, что гормоны в организме делают то же самое.
Когда секретин попадает в поджелудочную железу, он, возможно, ускоряет какую-то ключевую реакцию, которая в его отсутствие идет очень медленно. Эта ключевая реакция, вероятно, запускает каскад реакций, который заканчивается образованием и секрецией порций панкреатического сока. Малый по интенсивности стимул в таких условиях может вызвать крупномасштабную реакцию. Эти механизм по своему действию напоминает действие рычажка в автомате пожарной сигнализации. Стоит потянуть за рычажок, как в пожарную часть поступает электрический сигнал. Пожарные собирают свои приспособления для тушения огня, и красные машины с воем сирен несутся по улицам к месту возгорания. Такой мощный ответ на легкое смещение рычажка. К сожалению, в отношении гормонов эта теория оказалась несостоятельной. Обычно энзимы проявляют свое ускоряющее воздействие на реакцию в пробирке не хуже, чем в живом организме, и в самом деле энзимы всегда изучались в пробирках, выражаясь научным языком, in vitro («в стекляшке», лат.), что позволяет проводить нужные реакции в контролируемых условиях. Однако с гормонами этого сделать не удастся. Очень немногие гормоны проявляют способность ускорять специфические биохимические реакции в пробирках. Кроме того, многие гормоны оказались по своей структуре не белками, а насколько мы знаем, все энзимы являются именно белками. Представляется, что единственный вывод, который мы можем сделать на основе этих данных, - это что гормоны не являются катализаторами. Была выдвинута вспомогательная теория о том, что, хотя сами гормоны не являются энзимами, они способствуют проявлению действия некоторых энзимов, которые ускоряют те или иные специфические реакции только в присутствии данного гормона. Или, возможно, существует целая энзимная система, выполняющая цепь реакций, противодействующих какому-то определенному эффекту. Гормоны подавляют активность какого-либо из этих энзимов. Такой гормон ингибирует («подавляет», «задерживает», лат.) активность энзимов. Это останавливает реакцию противодействия какому-либо процессу, и он начинает идти. Таким образом, быть может, поджелудочная железа могла бы постоянно вырабатывать панкреатический сок, если бы не какая-то ключевая реакция, которая этому противодействует. Секретин, блокируя эту реакцию, запускает синтез и секрецию панкреатического сока. Такой способ действия кажется весьма неуклюжим, но некоторые механизмы, сделанные людьми, работают по такому же принципу. Например, охранная сигнализация может быть сконструирована таким образом, что звонок не работает, пока в цепи прибора течет ток, но, как только взламывают дверь или окно, прерывая ток, звонок срабатывает.
К сожалению, оказалось трудно показать, что такое взаимодействие отдельных гормонов и энзимов осуществляется в природе. Даже в тех случаях, когда удалось продемонстрировать, что некоторые гормоны либо стимулируют, либо подавляю: действие энзимов, доказательства этих фактов оказались спорными.
Есть еще одна теория, смысл которой сводится? тому, что гормоны, воздействуя на клеточную мембрану, так изменяют ее свойства, что она начинает пропускать некоторые вещества из крови в клетку для наглядности представьте себе, что рабочие строят высокий небоскреб, и однажды им привозят алюминиевый сайдинг. В этом случае рабочие весь дет будут трудиться па фасаде дома. Если же вмести сайдинга привезут медную проволоку, то работы переместятся внутрь дома, где те же рабочие начнут прокладывать электрическую проводку.
Подобным же образом гормоны могут действовать на клеточную мембрану так, чтобы она пропускала внутрь клетки одни вещества и не пропускала другие. Возможно, воздействие секретина на мембраны клеток поджелудочной железы заключается в том, что эти клетки начинают получать и; крови вещество, необходимое для выработки панкреатического пищеварительного сока.
Но эта теория пока тоже не доказана. Вопрос о механизме действия гормонов остается открытым я бы даже сказал, очень широко открытым.
ПЕПТИДНЫЕ ГОРМОНЫ
Я сосредоточил внимание па секретине в гораздо большей степени, чем он сам по себе того заслуживает, потому что это, так сказать, минорный гормон, поскольку речь идет об этом классе физиологически активных веществ. Тем не менее, секретин интересен уже в историческом плане, как первый из открытых гормонов. Кроме того, многое из того, что я говорил о секретине, вполне приложимо и к другим гормонам.
Важно, однако, подчеркнуть, что на свете существуют и другие гормоны. Есть даже такие, которые тоже взаимодействуют с поджелудочной железой. Если очистить секретин и ввести его в кровь, то поджелудочная железа начинает обильно выделять щелочной сок, содержащий, однако, мало энзимов, а как раз они-то и отвечают за пищеварительное действие панкреатического сока. Не столь тщательно очищенные препараты секретина стимулируют выделение панкреатического сока с большим содержанием энзимов.
Очевидно, что в неочищенном препарате содержится какой-то второй гормон, удаляемый при очистке. Он-то и стимулирует выработку энзимов. Были приготовлены экстракты, содержащие это вещество, что позволило подтвердить эту догадку. Это второе вещество, стимулирующее выработку богатого энзимами панкреатического сока, тоже оказалось гормоном, который назвали панкреозимином (сокращение от «энзим поджелудочной железы»).
Представляется, что секретин оказывает также стимулирующее воздействие па печень, заставляя ее выделять другой пищеварительный секрет - желчь. Желчь, вырабатываемая под воздействием секретина, содержит малое количество веществ (обычно присутствующих в исходной желчи), называемых желчными солями и желчными пигментами, Желчный пузырь - небольшой мешок, прикрепленный к печени, - содержит запас концентрированной желчи, в которой повышена концентрация желчных солей и желчных пигментов. Секретин не стимулирует выброс этого запаса в кишечник, но зато это делает другой гормон, образующийся в слизистой оболочке кишки. Этот гормон стимулирует сокращение мышечной стенки желчного пузыря и выделение концентрированной желчи в кишку. Этот гормон называется холецистокинином («приводящий в движение пузырь», греч.).
Секреция холецистокинина стимулируется жиром, который вместе с желудочным содержимым поступает в двенадцатиперстную кишку. Это очень полезная реакция, поскольку желчь самой природой предназначена для эмульгирования жиров и облегчения их переваривания. Жирная пища стимулирует повышенную секрецию холецистокинина, который, в свою очередь, стимулирует желчный пузырь, заставляя последний выдавливать в кишку большее, чем обычно, количество желчных солей (эмульгаторов), которые эмульгируют жир, запуская процесс его подготовки к перевариванию.
Я уже упомянул о том, что одним из эффектов секретина является нейтрализация кислотности желудочного сока, поскольку вырабатываемый под действием секретина панкреатический сок имеет щелочную реакцию. Это необходимо, потому что энзимы панкреатического сока работают только в слабощелочной среде, и если поступившая в кишку пища сохранит кислую реакцию, то пищеварение будет происходить с черепашьей скоростью Частично этот желательный ощелачивающий эффект будет ослаблен, если желудок продолжит вырабатывать большие количества кислоты после того, как пища покинет его. Насколько необходим; такая секреция, пока желудок наполнен пищей, на столько же она вредна, когда он пуст, а кислый желудочный сок беспрепятственно поступает в кишку. Неудивительно поэтому, что одним из многих эффектов секретина оказалась его способность подавлять желудочную секрецию.
Правда, более действенную роль в подавлении желудочной секреции играет другой гормон, предназначенный специально для этой цели. Несколько веществ, присутствующих в пище, стимулируют кишечник к выработке вещества, названного энтерогастроном («кишечно-желудочный», греч.) названии подчеркивается, что вещество вырабатывается в кишечнике, но действует на желудок). Энтерогастрон, в отличие от многих других гормонов не стимулирует, а, наоборот, угнетает функцию Было предложено называть вещества, которые во всех отношениях ведут себя как гормоны, за исключением того, что они подавляют, а не стимулируют какие-то функции, халонами («ослаблять» греч.). Тем не менее, название не прижилось, и гормонами по-прежнему без разбора называют все подобные вещества, независимо от того, возбуждают (как следует из самого слова «гормон») они какую-либо функцию или подавляют ее.
Однако, если поступление пищи в верхние отделы кишечника стимулирует секрецию гормонов подавляющих желудочную секрецию, то пища, находящаяся в желудке, должна, по логике вещей, вызывать секрецию гормонов, стимулирующих вы деление желудочного сока, поскольку он нужен для переваривания этой пищи. Такой гормон действительно был найден. Он продуцируется клетками слизистой оболочки желудка, и его назвали гастрином («желудок», греч.).
Согласно данным исследователей, было открыто множество гормонов, которые так или иначе влияют на секрецию пищеварительных соков в желудке и тонком кишечнике. Ни один из этих гормонов не был изучен столь подробно, как секретин, но считается, что все они - полипептиды. Единственный гормон, который в этом отношении вызывает споры, - это гастрин. Некоторые ученые полагают, что молекула гастрина представляет собой модифицированную молекулу одной-единственной аминокислоты. Все упомянутые гормоны работают совместно, обеспечивая согласованную деятельность желудка и кишечника. Всю совокупность гормонов, регулирующих работу пищеварения, называют гормонами желудочно-кишечного тракта.
Гормоны оказывают влияние на выработку пищеварительных соков. Это факт, но не менее интересным фактом является то, что эти отношения обоюдны. Существуют пищеварительные соки, которые вызывают образование в крови полипептидных гормонов. Это открытие было сделано в 1937 году, когда группе немецких физиологов удалось показать, что смесь сыворотки крови и экстракта слюнных желез вызывает сокращение изолированного участка стенки толстой кишки. По отдельности такого эффекта не оказывали ни сыворотка, ни экстракт слюнных желез. Вывод напрашивался сам собой. Очевидно, что в слюнной железе содержится энзим, который, попав в кровеносное русло, отщепляет небольшой фрагмент от крупной белковой молекулы, циркулирующей в крови (пользуясь уже упомянутой аналогией, можно сказать, что это похоже на отрывание почтовой марки от их блока). Малые фрагменты оказались полипептидными; гормонами, которые в одних условиях вызывали сокращение гладкой мускулатуры, а в других - ее расслабление.
Энзим был назван калликреином. Оказалось, что он и некоторые подобные ему ферменты находятся не только в слюнных железах, но и в других тканях. Гормон, продуцируемый под действием калликреина, был назван каллидином. Он существует в двух очень похожих друг на друга разновидностях - каллидин и каллидин II. Функция каллидина в организме до сих пор полностью не выяснена. С одной стороны, он снижает артериальное давление, расширяя мелкие кровеносные сосуды и увеличивая их емкость. В результате сосуды становятся более проницаемыми, что, в свою очередь, позволяет жидкости скапливаться в пораженных участках, образуя волдыри. Белые кровяные тельца, лейкоциты, довольно легко проникают сквозь стенки пораженных сосудов и проникают в волдыри, тоже скапливаясь там вместе с жидкостью.
Вещество, похожее на каллидин, образуется в крови под действием некоторых змеиных ядов. Суммарный эффект на ткани в некоторых отношениях напоминает воздействие на них соединения, называемого гистамином, но проявляется он медленнее, чем при введении или выделении последнего (30 секунд против 5). Каллидииоподобпое вещество, продуцируемое иод действием змеиного яда, назвали брадикинином («медленно движущий», греч.). По мере изучения брадикинин, каллидин и подобные им гормоны были объединены под общим названием кинины. В яде осы, например, содержатся готовые к действию кинины. Когда оса жалит, кинины попадают непосредственно в кровоток и по меньшей мере отчасти объясняют возникновение боли и отека, развивающегося вследствие нарушения проницаемости мелких сосудов и скопления под кожей вытекшей из них жидкости.
Молекулы кинина не столь сложны, как молекулы желудочно-кишечных гормонов. Имея в своем составе 9 - 10 аминокислотных остатков, эти соединения вряд ли могут претендовать на право называться уважаемыми членами славного семейво полипептидов. Сравнительная простота строения кинимов позволила биохимикам установить точную последовательность аминокислот в их молекулах. Оказалось, например, что брадикинин идентичен каллидину I, и его молекула состоит из 9 аминокислот. Применяя сокращения Бранда, можно и записать их порядок:
arg pro pro gly phe ser pro phe arg.
Достарыңызбен бөлісу: |