Глава 4
Генная машина
1. В функциональном плане мозг можно рассматривать как аналог компьютера.
Подобные утверждения вызывают беспокойство у критиков, склонных воспринимать все слишком буквально. Они безусловно правы, считая, что мозг во многом отличается от компьютера. Например, процессы, происходящие в мозгу, совершенно не похожи на способы действия компьютеров, созданных нашей техникой. Но это никоим образом не умаляет справедливость моего утверждения о том, что мозг и компьютер выполняют аналогичные функции. В функциональном смысле головной мозг в точности выполняет обязанности бортового компьютера: переработка данных, распознавание образов, кратковременное и долговременное хранение данных, координация операций и т. д.
Раз мы заговорили о компьютерах, следует указать, что мои замечания о них устарели - это может обрадовать вас или огорчить, в зависимости от ваших взглядов. Я написал (с. 54), что «транзисторов черепная коробка могла бы вместить всего несколько сотен». Современные транзисторы построены на интегральных схемах. Число единиц, эквивалентных транзисторам, которое может вместить человеческий череп, измеряется миллиардами. Я утверждал также (с. 57), что компьютеры, играющие в шахматы, могут достигнуть уровня хорошего любителя. Сегодня программы, обыгрывающие любого шахматиста, за исключением очень серьезных, запросто выполняются на дешевых домашних компьютерах, а самые лучшие программы бросают серьезный вызов великим мастерам. Вот, например, что писал шахматный обозреватель журнала «Спектейтор» Раймонд Кин в номере от 7 октября 1988 г.:
Пока еще остается некой сенсацией, когда титулованного шахматиста обыгрывает компьютер, но, вероятно, этому скоро придет конец. В наши дни самое опасное железное чудовище, способное бросить вызов человеческому мозгу, - это машина, получившая изящное название «Мыслитель», несомненно в честь Дугласа Адамса. Последний свой подвиг она совершила на Открытом чемпионате США, состоявшемся в августе в Бостоне, где она терроризировала своих соперников-шахматистов. У меня пока нет сведений о суммарном рейтинге «Мыслителя», но я наблюдал за его игрой, когда он одержал впечатляющую победу над сильным канадским шахматистом Игорем Ивановым - человеком, обыгравшим однажды Карпова! Следите внимательно; возможно, что это будущее шахмат.
Далее следует подробный, ход за ходом, разбор партии. Вот как Кин оценивает 22-й ход «Мыслителя»:
Превосходный ход... Идея была в том, чтобы централизовать ферзя... и это замечательно быстро привело к успеху. Поразительный результат... Ферзевой фланг черных полностью рушится вторжением ферзя.
Ответные действия Иванова описаны так:
Отчаянный выпад... от которого компьютер с презрением отмахивается. Предельное унижение. Машина игнорирует возврат королевы, устроив вместо этого внезапный мат... Черные сдаются.
Дело не только в том, что «Мыслитель» - один из лучших в мире шахматистов. Пожалуй, еще более поразительно, что комментатор в своем репортаже невольно как бы наделяет машину человеческим сознанием. «Мыслитель» «с презрением отмахивается от предпринятого Ивановым отчаянного выпада». Кин называет «Мыслителя» «агрессивным». Он говорит, что Иванов «надеется» на какой-то исход, но во всех его словах чувствуется, что он готов употребить такое слово, как «надежда», и применительно к компьютеру. Лично я надеюсь дождаться того дня, когда компьютерная программа выиграет матч на первенство мира. Человечеству необходимо подвергнуться испытанию унижением.
2. В созвездии Андромеды, на расстоянии 200 световых лет от Земли, существует некая цивилизация.
В «Андромеде» и в «Победе Андромеды», являющейся ее продолжением, остается неясным, посылает ли внеземная цивилизация сигналы с чрезвычайно далекой от Земли галактики Андромеды или же, как я сказал, с одной из более близких к нам звезд в созвездии Андромеда. В первой книге эта планета находится на расстоянии 200 световых лет от нашей собственной галактики. Во второй, однако, те же инопланетяне находятся уже в галактике Андромеды, удаленной от нас на 2 миллиона световых лет. Мои читатели могут, если найдут нужным, заменить «200» на «2 миллиона». Это не имеет никакого значения для тех целей, в которых я воспользовался этой книгой.
Фред Хойл (Fred Hoyle), главный автор этих двух романов, - выдающийся астроном, написавший лучшую с моей точки зрения научно-фантастическую книгу «Черное облако». Его великолепная способность к научному предвидению, проявившаяся в полной мере в его книгах, резко контрастирует с потоком красноречия, характерным для его более недавних книг, написанных в соавторстве с К. Викрамасингхом (С. Wickramasinghe). Их неправильное изложение дарвинизма (как теории чистой случайности) и их язвительные нападки на самого Дарвина нисколько не украшают их в общем занимательные (хотя и неправдоподобные) спекуляции о возникновении жизни в межзвездном пространстве. Следовало бы отказаться от неверного представления о том, что заслуги в одной области подразумевают компетентность в другой. А до тех пор, пока это неверное представление существует, почтенным ученым следует избегать соблазна злоупотреблять им.
3. ... стратегий и превратностей такой сложной профессии, как жизнь.
Говорить о стратегии животного или растения, как если бы они сознательно работали над оптимизацией этой стратегии [например, описывать «самцов как азартных игроков, рискующих делать крупные ставки, а самок - как играющих наверняка» (с. 61)], стало обычным среди биологов. Это удобные выражения, которые остаются безобидными, если не попадают в руки тех, кто недостаточно подкован, чтобы понимать их. Или слишком подкован, чтобы понимать их превратно? С других позиций я, например, не могу понять смысл опубликованной в журнале «Философия» статьи некой Мэри Мидгли (Mary Midgley), критикующей «Эгоистичный ген». Характер этой критики становится понятным с самой первой фразы: «Гены могут быть эгоистичными или неэгоистичными не более, чем атомы ревнивыми, слоны абстрактными или печенье телеологическим». В своей статье «В защиту эгоистичного гена», опубликованной в следующем номере того же журнала, я обстоятельно ответил на эту, кстати сказать, очень резкую и злую статью. Мне кажется, что некоторые люди, в свое время слишком увлекавшиеся философией, не могут удержаться от того, чтобы не покопаться в этом научном багаже даже тогда, когда в этом нет нужды. Мне вспомнилось замечание П. Медоуэра о притягательности «философского романа» для «большой части населения, нередко с хорошо развитым литературным и научным вкусом, получившей образование, которое значительно превосходит их способность к аналитическому мышлению».
4. Быть может, осознание возникает тогда, когда модель мира, создаваемая мозгом, достигает такой полноты, что ему приходится включать в нее модель самого себя.
Я излагал идею моделирования мозгом окружающего мира в 1988 г., в своей Гиффордовской лекции «Миры в микрокосме». Мне все еще неясно, поможет ли она нам в решении глубокой проблемы самого сознания, но признаюсь, мне было приятно, что она привлекла к себе внимание сэра Карла Поппера (Karl Popper) и он упомянул о ней в своей Дарвиновской лекции. Философ Даньел Деннет (Daniel Dennet) выдвинул теорию сознания, которая продвигает метафору моделирования на компьютере дальше. Чтобы понять его теорию, нам следует усвоить две технические идеи из области компьютеров: идею о виртуальной вычислительной машине и различие между последовательными и параллельными процессорами. Прежде всего я хочу разъяснить эти идеи.
Компьютер - это настоящая машина, т. е. некое устройство, помещенное в ящик. Однако в каждый отдельный промежуток времени, когда это устройство работает по программе, оно как бы превращается в другую машину - виртуальную машину. Это давно уже относилось ко всем компьютерам, однако особенно ярко проявляется у современных компьютеров, дружественно настроенных к пользователю. В момент написания этих строк ведущей фирмой по таким компьютерам является по общему признанию Эппл Макинтош. Ее успех обусловлен встроенной последовательностью программ, благодаря которой эта реальная железная машина (ее механизмы, как у любого компьютера, устрашающе сложны и мало совместимы с человеческой интуицией) выглядит как нечто иное, специально созданное для того, чтобы взаимодействовать с мозгом и рукой человека. Эта виртуальная машина, известная под названием Пользовательский Интерфейс фирмы Макинтош, на первый взгляд кажется обычной машиной. У нее есть кнопки, которые можно нажимать, и плавные регуляторы, как у хорошего современного проигрывателя. Но это виртуальная машина. Кнопки и плавные регуляторы сделаны не из металла или пластмассы. Это изображения на экране, и вы нажимаете на них или плавно перемещаете по экрану с помощью сенсорного карандаша. В соответствии со своей человеческой природой вы чувствуете себя «на коне», поскольку вы привыкли управлять процессами с помощью пальца. В течение 25 лет я интенсивно занимаюсь программированием и использованием самых разнообразных цифровых вычислительных машин и могу заявить, что работа с компьютером Макинтош (или его имитацией) качественно отличается от работы на компьютерах любых более ранних типов. Вы работаете на виртуальной машине без всякого напряжения, воспринимая ее как нечто естественное, почти как если бы она была продолжением вашего собственного тела. Удивительно часто при этом вы полагаетесь на интуицию вместо того, чтобы обращаться к руководству.
Перехожу теперь к другой идее, которую нам следовало бы позаимствовать из компьютерной науки, - идее последовательных и параллельных процессоров. Сегодняшние цифровые вычислительные машины - это по большей части последовательные процессоры. У них имеется одна центральная вычислительная «фабрика», единственное «узкое место»-электронное горлышко, через которое должны пройти все обрабатываемые данные. Благодаря быстродействию этих машин создается впечатление, что они одновременно занимаются многими разными вещами. Последовательный компьютер можно сравнить с гроссмейстером, который «одновременно» играет с 20 противниками, но на самом деле все время переходит от одного из них к другому. Компьютер, в отличие от гроссмейстера, переходит от одной задачи к другой так быстро и плавно, что у каждого пользователя создается иллюзия, будто он один целиком владеет вниманием компьютера. Однако на самом деле компьютер занимается своими пользователями поочередно.
Недавно, решая задачу по достижению еще более головокружительного быстродействия, конструкторы создали подлинно параллельные процессоры. Один из них. Эдинбургский компьютер, я недавно имел честь посетить. Он состоит из нескольких сотен параллельно работающих «транспьютеров», каждый из которых равен по мощности современному настольному компьютеру. Этот суперкомпьютер приступает к решению проблемы, разбивая ее на более мелкие задачи, которые можно решать по отдельности, и препоручая их бригадам транспьютеров. Транспьютеры «забирают» эти субпроблемы, разрешают их, выдают ответы и являются за следующим заданием. Тем временем другие бригады транспьютеров сообщают свои результаты, так что суперкомпьютер в целом получает окончательный ответ на много порядков величины быстрее, чем это мог бы сделать обычный последовательный компьютер.
Я уже говорил, что, следя за работой обычного последовательного компьютера, можно подумать, что он действует как параллельный процессор, достаточно быстро переключая свое «внимание» с одной из целого круга задач на другую. В таких случаях можно было бы сказать, что над аппаратным оснащением последовательного компьютера имеется виртуальный параллельный процессор. По мнению Деннета (Dennett) головной мозг человека устроен по прямо противоположному принципу: его аппаратное оснащение представляет собой параллельный процессор, подобно аппаратному оснащению эдинбургской машины. И он использует программу, составленную таким образом, чтобы создать иллюзию последовательной переработки информации: виртуальная машина с последовательной переработкой информации, находящаяся над параллельной архитектурой. По мнению Деннета, характерная особенность субъективного опыта мышления - это последовательный, шаг за шагом, «джойсовский» поток сознания. Деннет полагает, что большинство животных лишены опыта такого последовательного мышления и используют мозг непосредственно, в соответствии с его природным параллельным способом переработки информации. Человеческий мозг, несомненно, также непосредственно использует свою параллельную архитектуру для решения многих рутинных задач, обеспечивающих поддержание сложной машины выживания в рабочем состоянии. Но, кроме того, в человеческом мозгу в процессе эволюции возникла виртуальная машина с программным обеспечением, создающая иллюзию последовательного процессора. Разум с его последовательным потоком сознания представляет собой виртуальную машину, подвергающую мозг испытанию в манере «дружественного расположения» к пользователю, подобно тому как интерфейс к компьютеру Макинтош подвергает испытанию в такой же манере реальный компьютер внутри серого ящика.
Не вполне ясно, для чего нам, людям, понадобилась последовательная виртуальная машина, тогда как другие виды, очевидно, вполне удовлетворены своими несовершенными параллельными машинами. Быть может, наиболее трудные задачи, какие вынужден был решать первобытный человек, в самой своей основе являются последовательными, а может быть, Деннет допустил ошибку, выделив нас из всех других видов. Далее он полагает, что развитие последовательного программного обеспечения - явление, относящееся в значительной мере к культурной эволюции, и опять-таки мне неочевидно, почему это следует считать достаточно вероятным. Я должен добавить, однако, что в момент написания этих строк работа Деннета еще не была напечатана и мое изложение основано на воспоминаниях о его Джекобсоновской лекции, прочитанной в 1988 г. в Лондоне. Я рекомендую читателю обратиться к работе самого Деннета, когда она будет опубликована, а не полагаться на мое, несомненно, неточное, эмоциональное и, может быть, даже приукрашенное изложение.
Психолог Николае Хамфри (Nicholas Humphrey) также выдвинул соблазнительную гипотезу о том, как эволюция способности к моделированию могла привести к сознанию. В своей книге «Внутренний глаз» Хамфри убедительно доказывает, что животные с высокоразвитым общественным образом жизни, такие как человек и шимпанзе, неизбежно должны становиться прекрасными психологами. Головной мозг вынужден плутовать с внешним миром и моделировать многие его аспекты. Однако аспекты этого мира по большей части довольно просты по сравнению с самим мозгом. Общественные животные живут в мире других животных - в мире потенциальных брачных партнеров, соперников, единомышленников и врагов. Для выживания и процветания в таком мире необходимо уметь предвидеть, что собираются делать эти другие индивидуумы в ближайшем будущем. Предсказывать события в неживом мире - одно удовольствие по сравнению с предсказанием возможных событий в обществе. Психологи, занимающиеся научными исследованиями, не умеют правильно предсказывать поведение людей. Компаньонки, сиделки и разного рода другие работники сферы социального обслуживания на основании малейших движений лицевых мышц и других тонких признаков нередко поразительно точно угадывают мысли и подспудные причины тех или иных поступков. Хамфри считает, что такое «естественное психологическое» искусство достигает высокого развития у общественных животных, почти как дополнительный глаз или какой-нибудь другой сложный орган. Этот «внутренний глаз» возник в процессе эволюции как социально-психологический орган, точно так же как наружный глаз - это орган зрения.
До сих пор я считаю рассуждения Хамфри убедительными. Далее он утверждает, что внутренний глаз в своих оценках полагается на самоинспектирование. Каждое животное заглядывает в собственные ощущения и эмоции для того, чтобы понять ощущения и эмоции других. Психологический орган функционирует путем самоинспектирования. Я не уверен, что это поможет нам проникнуть в сущность сознания, но Хамфри хороший писатель и его книга убедительна.
5. Ген альтруистичного поведения. ..
Некоторых смущает, когда говорят о генах, определяющих альтруизм или какое-то другое очевидно сложное поведение. Они полагают (ошибочно), что в известном смысле сложность поведения должна быть генетически детерминирована. Но как может альтруизм определяться одним геном, если вся деятельность гена сводится к кодированию одной белковой цепи? Однако говорить, что данный ген определяет некий признак, означает лишь то, что изменение этого гена вызывает изменение этого признака. Единичное генетическое различие, касающееся какой-то детали молекул, содержащихся в клетках, обусловливает различие в уже сложных процессах эмбрионального развития, а следовательно, и, скажем, поведения.
Например, мутантный ген птиц, детерминирующий братский альтруизм, конечно, не может в одиночку создать совершенно новый и сложный тип поведения. Вместо этого он изменяет какой-то уже существующий и, возможно, уже достаточно сложный тип поведения. Наиболее вероятным предшественником в данном случае служит родительское поведение. У птиц обычно имеется сложный нервный аппарат, необходимый для того, чтобы выкармливать своих птенцов и заботиться о них. Это поведение в свою очередь возникало в процессе медленной, шаг за шагом, эволюции на протяжении многих поколений от собственных предков. (Между прочим, те, кто скептически относятся к генам братского альтруизма, часто бывают непоследовательны: почему они не проявляют точно такого же скептицизма в отношении генов, определяющих столь же сложную заботу о потомстве?) Предсуществующие типы поведения - в данном случае забота о потомстве - реализуются через такое удобное эмпирическое пр#e0вило, как «Корми в гнезде всех, кто орет и разевает рот». В таком случае влияние гена, детерминирующего «кормление младших братьев и сестер», состоит в том, что он сдвигает возраст, в котором это правило начинает действовать, на более ранний. Оперившийся птенец, несущий ген братской заботы в виде вновь возникшей мутации, попросту активизирует свое родительское эмпирическое правило несколько раньше, чем птица с нормальным аллелем. Он будет относиться к орущим существам с разинутым ртом в гнезде своих родителей, т. е. к своим братьям и сестрам, так, как если бы это были орущие существа, разевающие рты, в его собственном гнезде, т. е. его дети. Такое «братское поведение», никак не будучи неким совершенно новым и сложным изобретением в области поведения, могло первоначально возникнуть как незначительное отклонение сроков развития уже существующего поведения. Как это часто бывает, ошибки появляются тогда, когда мы забываем о том, что важнейшая особенность эволюции - ее постепенность, что адаптивная эволюция происходит путем мелких последовательных изменений уже существующих структур или типов поведения.
6. Пчелы с повышенной санитарной активностью.
Если бы в первом издании моей книги были примечания, то в одном из них я объяснил бы - как это самым тщательным образом сделал сам Ротенбьюлер, - что результаты экспериментов с пчелами были не столь уж четкими и ясными. В одной из многих колоний, в которых пчелы, согласно теории, не должны были проявлять повышенную санитарную активность, она все же наблюдалась. По собственным словам Ротенбьюлера, «мы не можем пренебречь этим результатом, как бы нам этого ни хотелось, но мы основываем свои генетические гипотезы на других данных». Возможным объяснением может служить мутация в этой аномальной колонии, хотя это маловероятно.
7. Это поведение, которому можно дать широкое название коммуникации.
Меня теперь не удовлетворяет то, как я изложил проблему коммуникации, или передачу информации, у животных. Мы с Джоном Кребсом в двух статьях настаиваем на том, что большая часть используемых животными сигналов лучше считать не информативными и не вводящими в заблуждение, но манипулятивными. Сигнал служит средством, с помощью которого одно животное может воспользоваться мышечной силой другого животного. Песня соловья не несет в себе никакой информации, даже обманчивой. Это красноречие, которое убеждает, гипнотизирует, очаровывает. Подобные рассуждения доведены до своего логического завершения в «Расширенном фенотипе», суть которого вкратце изложена в гл. 13 настоящей книги. Мы с Кребсом считаем, что сигналы развиваются из взаимодействия того, что мы называем чтением мыслей, и манипуляции. Совершенно иной подход ко всей проблеме сигналов животных избрал Эймоц Захави (Amotz Zahavi). В одном из примечаний к гл. 9 я обсуждаю взгляды Захави гораздо более благосклонно, чем в первом издании этой книги.
Глава 5. Агрессия: стабильность и эгоистичная машина
1. ... эволюционно стабильная стратегия...
Сформулируем теперь главную идею ЭСС следующим, более экономичным способом. ЭСС это стратегия, эффективная против копий самой себя. В основе такого определения лежат следующие соображения. Успешная стратегия - это стратегия, доминирующая в данной популяции. Поэтому она будет сталкиваться с собственными копиями и сможет оставаться эффективной лишь в том случае, если будет успешно справляться с этими копиями. Это определение математически не столь точно, как определение Мэйнарда Смита, и оно не может заменить последнее, поскольку в сущности является неполным. Однако оно обладает тем достоинством, что неявно заключает в себе основную идею ЭСС.
В настоящее время концепция ЭСС получила среди биологов более широкое распространение, чем тогда, когда была написана эта глава. Мэйнард Смит сам подвел итоги всего, что было сделано до 1982 г., в своей книге «Эволюция и теория игр». Несколько позже написал обзор Джеффри Паркер (Geoffrey Par-ker), еще один из тех, кто внес большой вклад в эту область. Теория ЭСС использована в «Эволюции кооперации» Роберта Аксельрода (Robert Axelrod), но я не стану обсуждать ее здесь, так как одна из двух моих новых глав, «Добрые парни финишируют первыми», в значительной своей части посвящена книге Аксельрода. Сам я после выхода в свет первого издания этой книги опубликовал на тему теории ЭСС статью «Хорошая стратегия или эволюционно стабильная стратегия», а также, вместе с соавторами, статьи о сфексах, рассматриваемых ниже.
2. ... стратегия... Отпорщика стабильна в эволюционном смысле.
Это утверждение, к сожалению, оказалось неверным. В оригинальной статье Мэйнарда Смита и Прайса была допущена ошибка, а я повторил ее в этой главе и даже усугубил, высказав довольно глупое мнение, что стратегия «Испытатель-Отпорщик» - это «почти» эволюционно стабильная стратегия (если некая стратегия «почти» ЭСС, то значит, это не ЭСС и будет побеждена). На первый взгляд кажется, что стратегия Отпорщик похожа на ЭСС, потому что в популяции Отпорщиков ни одна другая стратегия не может быть более эффективной. Но Голубь в такой популяции оказывается столь же эффективным, так как его поведение в ней неотличимо от поведения Отпорщика. Поэтому Голубь может постепенно втягиваться в популяцию. Важно понять, что же происходит в дальнейшем. Дж. Хейл (J.S. Hale) и Л. Ивз (L.J. Eaves) создали динамическую компьютерную модель, которая воспроизводит эволюцию популяции животных на протяжении многих поколений. Они показали, что подлинная ЭСС в этой игре возможна при стабильной смеси Ястребов и Задир. Это не единственная ошибка в ранних работах по ЭСС, обнаруженная при такого рода динамическом подходе. Другим хорошим примером служит моя собственная ошибка, рассматриваемая в примечаниях к гл. 9.
3. К сожалению, наши знания пока слишком ограниченны для того, чтобы давать реалистические оценки потерь и выигрышей при различных исходах подлинных событий, происходящих в природе.
Мы теперь располагаем некоторыми надежными измерениями потерь и выигрышей в природе, которые проводились полевыми методами; эти данные были введены в определенные модели ЭСС. К числу лучших примеров относится один из видов роющих ос-сфексов, обитающих в Северной Америке. Это вовсе не те хорошо знакомые всем общественные осы, облепляющие наши банки с вареньем, которые представляют собой рабочих особей (самок) и заняты добыванием корма для своей колонии. У сфексов каждая самка предоставлена самой себе, и вся ее жизнX'fc посвящена тому, чтобы обеспечить кров и пищу последовательным вереницам личинок. В типичном случае самка начинает с того, что пробуравливает в земле длинную норку, в конце которой имеется обширная камера. Затем она начинает охоту за добычей (это могут быть различные прямокрылые, например кузнечики, или другие насекомые и их личинки). Найдя жертву, оса парализует ее уколом жала и утаскивает в норку. Набрав четыре или пять насекомых, она откладывает на них яйцо и запечатывает норку. Из яйца вылупляется личинка, питающаяся заготовленными для нее насекомыми. Заметим между прочим, что оса парализует, т. е. обездвиживает, а не убивает своих жертв, с тем чтобы они не разлагались, а оставались живыми и личинки получали бы свежую пищу. Именно этот мрачный обычай, свойственный также другим перепончатокрылым, ихневмонидам, побудил Дарвина написать: «Я не могу убедить себя, что милосердный и всемогущий Господь мог намеренно создать ихневмонид специально для того, чтобы они кормились в телах живых гусениц. ..» Дарвин мог бы привести в качестве примера и известного французского повара, который варил раков живьем, чтобы они были вкуснее. Возвращаясь к жизни самки сфекса, следует сказать, что она ведет одиночный образ жизни, если не считать других самок, которые трудятся поблизости, а иногда даже занимают чужие норки, вместо того чтобы вырыть собственную.
Д-р Джейн Брокман (Jane Brockmann)- своего рода осиный эквивалент Джейн Гудол. Она приехала из Америки в Оксфорд поработать со мной, привезя с собой объемистые записи о почти каждом событии в жизни каждой самки в двух популяциях ос, в которых всех самок можно было идентифицировать. Ее данные были столь полными, что позволяли составить бюджет времени индивидуальных ос. Время - это предмет потребления, который следует расходовать осмотрительно: чем больше времени расходуется в одной области жизни, тем меньше остается на другие. Присоединившийся к нам Ален Грейфен (Alan Grafen) учил нас правильно оценивать стоимость затрат времени и репродуктивных выигрышей. Мы получили данные о том, что в игре между самками ос в одной популяции из Нью-Хэмпшира используется настоящая смешанная ЭСС, хотя для другой популяции из Мичигана таких данных получить не удалось. Коротко, нью-хемпширские осы либо роют собственные норки, либо занимают гнездо, устроенное другой осой. Согласно нашей интерпретации, занимая чужое гнездо, осы могут выгадать, так как некоторые норки бывают брошены теми, кто их вырыл, и их можно использовать. Проникновение в занятое гнездо не окупается, но у входящей в чужое гнездо осы нет способа, позволяющего определять, занято данное гнездо или свободно. Она рискует провести несколько дней, не подозревая о второй хозяйке, пока однажды, вернувшись домой, не обнаружит, что норка запечатана: все ее усилия пропали даром, вторая хозяйка отложила свое яйцо и пожинает плоды всех трудов. Если в данной популяции делается слишком много попыток занять чужое гнездо, имеющихся норок становится мало, шансы на то, что у гнезда окажется две хозяйки, возрастают, и поэтому рыть собственную норку становится выгодно. И наоборот, если многие осы роют норки, их становится много и это благоприятствует захвату чужих нор. Существует некоторая критическая для данной популяции частота проникновения в чужие норки, при которой рыть собственную норку и проникать в чужую одинаково выгодно. Если действительная частота ниже критической, то естественный отбор благоприятствует проникновению в чужую норку ввиду наличия многочисленных покинутых норок. Если же действительная частота выше критической, то таких норок мало, и естественный отбор благоприятствует рытью собственных норок. Таким образом в популяции поддерживается некое равновесие. Детальное количественное исследование приводит к выводу, что в данной популяции имеет место настоящая смешанная ЭСС, т. е. каждая отдельная оса с некоторой вероятностью может рыть себе норку или проникать в чужую, в отличие от популяции, состоящей из смеси особей, специализированных либо к одному, либо к другому поведению.
4. Наилучшую из всех известных мне демонстраций этой формы асимметрии в поведении...
Еще более яркую, чем Тинберген, демонстрацию принципа «резидент всегда побеждает» дает Н. Дейвис (N. В. Davies), изучавший бабочек Pararge aegeria. Работа Тинбергена проводилась до создания теории ЭСС, и моя интерпретация ЭСС в первом издании этой книги была непредусмотрительна. Дейвис задумал свое исследование поведения бабочек с учетом теории ЭСС. Он обратил внимание на то, что у Уитхэм Вуд, близ Оксфорда, отдельные самцы бабочек защищали пятна солнечного света. Дело в том, что эти пятна привлекали к себе самок, тем самым превращая пятна в ценный ресурс - во что-то, за что имеет смысл бороться. Самцов было больше, чем освещенных солнцем участков, так что не завладевшие такими участками индивидуумы ожидали своего часа в тени, под пологом листвы. Отлавливая самцов и выпуская их затем одного за другим, Дейвис показал, что того из них, которого он выпускал на солнечный участок первым, оба самца считали «владельцем». Тот же самец, который попадал на участок вторым, считался «захватчиком». Захватчик абсолютно во всех случаях быстро признавал себя побежденным, предоставляя владельцу полное право распоряжаться участком. В заключительном, разящем наповал эксперименте Дейвис сумел обмануть обоих самцов, заставив их «думать», что один из них владелец участка, а другой - захватчик. Только в этих условиях между ними возникала действительно серьезная длительная борьба. Между прочим, во всех этих случаях, когда я для простоты говорил об одной паре бабочек, на самом деле Дейвис работал с выборкой, позволяющей получить статистически достоверные результаты.
5. Парадоксальная ЭСС. Другой случай, который мог бы служить примером парадоксальной ЭСС, описан в письме некоего м-ра Джеймса Доусона (James Dawson), опубликованном в газете «Тайме». «В течение нескольких лет я замечал, что одна чайка, используя флагшток в качестве выгодной позиции, неизменно уступала его другой чайке, которая стремилась занять это место, причем соотношение размеров двух птиц не играло никакой роли».
Самым убедительным известным мне примером парадоксальной стратегии служит поведение домашних свиней в скиннеровской камере. Эта стратегия стабильна в таком же смысле, как любая ЭСС, но ее лучше называть МСС («морфологически стабильная стратегия»), так как она возникает в течение собственной жизни данного животного, а не на протяжении эволюционного времени. Скиннеровская камера представляет собой устройство, в котором животное научается добывать себе пищу, нажимая на рычаг, после чего пища автоматически подается на лоток. Экспериментальные психологи часто помещают голубей или крыс в небольшие скиннеровские камеры, где животные быстро научаются нажимать на изящные небольшие рычаги, чтобы получить вознаграждение в виде пищи. Этому удалось обучить также свиней, помещая их в оборудованные специальным образом скиннеровские камеры с отнюдь не изящным рычагом, который они должны нажимать рылом (много лет назад я смотрел научный кинофильм об этих экспериментах и до сих пор помню, как я помирал со смеху). Б. Бол-дуин (В. A. Baldwin) и Дж. Меесе (G. Meese) обучали свиней в свинарнике, оборудованном наподобие скиннеровской камеры, но имевшем еще одну особенность: рычаг находился на одном конце свинарника, а кормушка на другом. Поэтому свинье приходилось, нажав на рычаг, мчаться на другой конец свинарника, чтобы получить пищу, а затем снова бежать к рычагу и т.д. Все шло прекрасно, но затем Болдуин и Меесе поместили в хлев пару свиней. Это дало возможность одной свинье эксплуатировать другую. Свинья-«раб» носилась вперед и назад, нажимая на рычаг, а свинья-«хозяцн» сидела около кормушки, пожирая пищу по мере ее поступления. В парах свиней устанавливаются такого рода прочные отношения «хозяин/раб»: один съедает почти все, а другой работает и бегает.
Вернемся к парадоксу. Ярлыки «хозяин» и «раб» оказались совершенно неадекватными истинному положению вещей. Во всех парах свиней, в которых устанавливались стабильные взаимоотношения, в роли «хозяина», или «эксплуататора», всегда выступала свинья, которая во всем остальном занимала подчиненное положение. А так называемым «рабом», выполнявшим всю работу, была свинья, которая обычно доминировала. Всякий, знакомый с поведением свиней, предсказал бы, что «хозяином», поедающим большую часть корма, будет доминантная свинья, а роль «раба», много работающего и почти не получающего пищи, достанется свинье, находящейся в подчинении.
Как могла произойти такая парадоксальная перестановка? Это нетрудно понять, если начать рассуждать в рамках концепции стабильных стратегий. Для этого достаточно перевести принцип ЭСС из масштабов эволюционного времени в масштабы времени, в котором протекает жизнь индивидуума, т. е. в котором складываются отношения между двумя свиньями. Стратегия «если ты занимаешь доминирующее положение, сиди все время возле еды; если подчиняешься - управляй рычагом» звучит разумно, но она не будет стабильной. Подчиняющаяся свинья, нажав на рычаг, должна была бы быстро бежать к кормушке, где она обнаружила бы доминантную свинью, которая уперлась передними ногами в кормушку, да так, что ее невозможно сдвинуть с места. Подчиняющаяся свинья быстро перестала бы нажимать на рычаг, поскольку это поведение никогда не вознаграждалось. Рассмотрим теперь противоположную стратегию: «если ты доминируешь - управляй рычагом; если подчиняешься - сиди у кормушки». Такая стратегия окажется стабильной, несмотря на то, что она приводит к парадоксальному результату, когда подчиняющаяся свинья получает большую часть корма. Необходимо лишь, чтобы доминантной свинье оставалось хоть сколько-нибудь корма, когда она мчится к кормушке с другой стороны хлева. Добежав, она без труда оттолкнет подчиняющуюся свинью от кормушки. До тех пор, пока доминирующей свинье достаются в награду хоть какие-то крохи, она будет продолжать приводить в действие рычаг, а тем самым непреднамеренно давать возможность подчиняющейся свинье обжираться. А подчиняющаяся свинья будет продолжать лениво сидеть у кормушки, так как это тоже вознаграждается. Таким образом, вся стратегия, при которой доминирующий индивидуум выступает в роли «раба», а подчиняющийся - в роли «хозяина», вознаграждается, а поэтому она стабильна.
6. ... своего рода иерархическая структура [у сверчков}...
Тед Берк (Ted Burk), бывший в то время моим аспирантом, обнаружил дальнейшие свидетельства такой псевдоиерархической структуры у сверчков. Он также показал, что самец у них чаще начинает ухаживать за самками, если недавно вышел победителем в драке с другим самцом. Это следовало бы назвать «эффектом герцога Мальборо», основываясь на следующей записи в дневнике первой герцогини Мальборо: «Его светлость вернулся сегодня с войны и, не снимая сапог, дважды доставил мне удовольствие». Можно придумать и другое название, связав его со следующим сообщением об изменениях уровня мужского гормона тестостерона, опубликованным в журнале New Scientist: «Уровень тестостерона у теннисистов в течение суток, предшествовавших большому матчу, повышался. По окончании матча у победителей высокий уровень сохранялся, а у побежденных падал».
7. ... концепцию ЭСС как одно из важнейших достижений эволюционной теории после Дарвина.
Это, пожалуй, слишком сильно сказано. Я, вероятно, чересчур быстро отреагировал на преобладавшее в те годы пренебрежительное отношение к идее ЭСС в биологической литературе, особенно в Америке. Так, например, этот термин ни разу не упоминается в объемистой «Социобиологии» Э. Уилсона (Е. О. Wilson). Теперь им больше не пренебрегают, а поэтому я могу занять более критическую и менее снисходительную позицию. Вовсе не обязательно пользоваться терминологией ЭСС, при условии, что ваши рассуждения достаточно четкие. Но эта терминология сильно способствует ясности мышления, особенно в тех случаях - а практически таких случаев большинство, - когда подробные генетические данные отсутствуют. Иногда говорят, что в основе модели ЭСС лежит допущение о бесполом размножении, однако такое утверждение вводит в заблуждение, если воспринимать его как явное противопоставление бесполого размножения половому. На самом же деле модели ЭСС не утруждают себя рассмотрением деталей генетической системы. Вместо этого они несколько туманно допускают, что подобное рождает подобное. Для многих целей такое допущение вполне пригодно. В сущности его неопределенность может быть даже благотворной, поскольку помогает сосредоточить внимание на главном, не вдаваясь в такие детали, как генетическое доминирование, о которых в конкретных случаях обычно ничего неизвестно. Концепция ЭСС весьма полезна в своей негативной роли: она помогает нам избежать теоретических ошибок, в которые мы могли бы впасть в ее отсутствие.
8. Прогрессивная эволюция - это, возможно, не столько упорное карабканье вверх, сколько ряд дискретных шагов от одного стабильного плато к другому.
Этот абзац представляет собой краткое и беспристрастное изложение хорошо известной в настоящее время теории прерывистого равновесия. Мне стыдно признаться, что когда были написаны эти строки, я, подобно многим биологам Англии в то время, совершенно ничего не знал об этой теории, хотя она была опубликована тремя годами ранее. Позднее, например в «Слепом часовщике», я проявлял некоторое раздражение (возможно, чрезмерное) из-за того, что теорию прерывистого равновесия слишком переоценивали. Я сожалею, если это оскорбило чьи-то чувства. Может быть, этим лицам приятно будет узнать, что во всяком случае в 1967 г. мои намерения были самыми добрыми.
Достарыңызбен бөлісу: |