Е. А. Богданов Основы технической



бет12/101
Дата14.06.2023
өлшемі6.94 Mb.
#475039
1   ...   8   9   10   11   12   13   14   15   ...   101
Е. А. Богданов Основы технической диагностики н...

Вибрация — это механические колебания, характеризующиеся многократно повторяющимся отклонением физических тел от по­ложения равновесия. Эти колебания являются следствием взаимо­действия четырех факторов: упругой реакции системы, степени ее демпфирования, силы инерции, характера и величины внешней нагрузки.
Вибрация может характеризоваться следующими основными па­раметрами: виброперемещением S, виброскоростью V, виброускоре­нием а, угловой скоростью или частотой колебаний w или f.
Наиболее простым видом вибрации (колебаний) являются гар­монические колебания, при которых колеблющаяся величина из­меняется по косинусоидальному или синусоидальному законам, например колебания вращающегося физического тела с неурав­новешенным центром масс (ц. м.) в вертикальном направлении (рис. 2.1).
Виброперемещение ц. м. при этом определится из выражения



Где S(t) — виброперемещение объекта; S(a)—амплитуда вибропереме­щения; w — угловая скорость колебаний, с-1; t — время; — началь­ная фаза колебаний в исходном состоянии при t = 0; wt + = — фаза колебаний.


Фаза колебаний определяет состояние колебательного процесса в заданный момент времени t. Периодом колебаний Т на­зывается наименьший промежуток времени, через который колеб­лющаяся система возвращается в исходное состояние. Величина
f= 1/Т называется частотой колебаний и измеряется числом колебаний в одну секунду (Гц). Частота f и угловая скорость w связаны ме­жду собой соотношением
w = 2 f
Соответственно виброскорость V и виброускорение а определя­ются по формулам:

Где и - амплитуда соответственно виброскорости и виброускорения,



Из приведенных выражений следует, что виброскорость относи­тельно виброперемещения имеет опережение фазы на 90°, виброу­скорение — на 180°.
Широкополосный установившийся вибрационный сигнал реаль­ных машин имеет сложный характер и состоит из ряда гармониче­ских составляющих (гармоник). Каждая из этих составляющих опре­деляется ее частотой, амплитудой и фазой относительно некоторого известного начала отсчета.
Колебания, которые могут быть представлены в виде суммы двух и более гармонических колебаний с разной частотой, называются по­лигармоническими, например

где Sа1, Sа2 — амплитуды виброперемещений гармонических состав­ляющих соответственно с угловыми частотами w1 и w2 и начальными фазами и .
Применяют два основных способа графического изображения вибрационного сигнала: в зависимости от времени или от частоты (угловой скорости) колебаний. Изображение сигнала в зависимости от времени называется временной разверткой. Совокупность частот составляющих гармонических колебаний, расположенных в порядке возрастания амплитуд, называется частотным спектром. Совокуп­ность амплитуд, характеризующих полигармонические колебания и расположенных в порядке возрастания частот, называется амплитуд­ным спектром.
На рис. 2.2, а, б приведены временные развертки сигналов про­стейших гармонических колебаний с частотой f1 = w2/2 и f2 = w2/2 и их амплитудные спектры, а на рис. 2.2, в — временной сигнал и его спектр, представляющий сумму этих простейших колебаний при w2 = 2w1 [15].
В общем случае спектральное представление сложных полигар­монических колебаний получают, используя разложение вибрацион­ного сигнала в ряд Фурье. Сигнал при этом представляется в виде суммы гармонических колебаний с частотами, кратными основной частоте w, т. е.



Где Sa1, - амплитуда и начальная фаза i-й гармонической составляющей виброперемещений, Sa1= Ai, Biкоэффициенты ряда Фурье, определенные по следующим выражениям:


Случайный вибрационный сигнал может принимать любое значе­ние в определенном диапазоне. Реальный вибрационный сигнал машины, как правило, представляет собой совокупность гармонических и случайных составляющих, что осложняет его обработку и анализ.
Для стационарных случайных сигналов также можно использовать спектральное представление. Только в этом случае используется не разложение в ряд Фурье, как для периодических сигналов, а интегральное преобразование Фурье



Где - спектральная плотность, характеризующая распределение энергии по частоте.


Пример временной развертки реального вибрационного сигнала, содержащего гармонические и случайные составляющие, приведен на рис. 2.3 [15].
Сложные полигармонические и гармонические колебания удоб­но представлять в виде среднеквадратических значений (СКЗ) виброперемещения Se, виброскорости Ve, и виброускорения ае.
СКЗ параметра вибрации хе = Sе,Ve, ае, определяется по формуле


где Т — временной интервал, на котором определяется СКЗ; t —время.


Важным параметром является так называемый пик-фактор А — амплитудный коэффициент, значение которого тем больше, чем больше выражен импульсный или случайный характер колебаний:





Для гармонических колебаний , при этом среднее значение параметра гармонической вибрации.



Виброскорость соответствует линейной скорости движения Центра масс физического тела в заданном направлении. СКЗ виб­роскорости определяет импульс силы и кинетическую энергию и поэтому исследуется при изучении эффективности вибрационных машин, а также воздействия вибрации на организм человека.
Виброускорение является мерой изменения виброскорости во времени и силовой характеристикой вибрации. По второму закону Ньютона произведение массы на ускорение равно силе. То есть сила, действующая на массу, вызывает ее ускорение в направлении своего действия, при этом скорость, а тем более величина перемещения за­висят от времени действия силы в данном направлении. С увеличе­нием частоты f период действия силы уменьшается, соответственно уменьшается виброскорость и, тем более, виброперемещение. По­этому виброускорение целесообразно измерять на высоких частотах, так как его амплитуда пропорциональна квадрату угловой частоты w2 = (2лf)2.



Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   ...   101




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет