6. РАДИАЦИОННЫЙ КОНТРОЛЬ
Радиационный неразрушающий контроль основан на использовании проникающих свойств ионизирующих излучений и является одним из наиболее эффективных и распространенных видов контроля. В нефтегазовой отрасли применяется прежде всего для контроля сварных соединений магистральных и промысловых трубопроводов, резервуаров для хранения нефти и нефтепродуктов, сосудов под давлением и других объектов. Реализация данного вида контроля предусматривает использование как минимум трех основных элементов: источника ионизирующего излучения; объекта контроля; детектора, регистрирующего результаты взаимодействия ионизирующего излучения с объектом контроля.
6.1. Источники ионизирующего излучения
В радиационном неразрушающем контроле используют три вида ионизирующих излучений: тормозное (х), гамма- ( ) и нейтронное (n).
Контроль с применением нейтронного излучения осуществляется только в стационарных условиях. Основными источниками нейтронного излучения являются ускорители заряженных частиц, ядерные реакторы и радиоактивные источники нейтронов. В полевых условиях при эксплуатации или строительстве объекта обычно используют х- или у-излучения. Источниками х-излучения при этом служат переносные импульсные рентгеновские аппараты, а -излучения — радиоактивные источники. С их помощью можно просвечивать стальные изделия толщиной 1...200 мм.
Излучающим элементом рентгеновских аппаратов являются вакуумные двухэлектродные рентгеновские трубки. На электроды трубки (с холодным катодом) подается импульс высокого напряжения, создаваемый путем разряда накопительной емкости через повышающий высоковольтный трансформатор. Под действием этого импульса происходит электрический пробой вакуума и при торможении электронов на аноде возникают кратковременные (0,1...0,2 мс) вспышки рентгеновского х-излучения.
При диагностировании оборудования в полевых условиях для контроля металлоконструкций применяется переносная рентгеновская аппаратура «Арина-0,5», «Шмель» и др., позволяющая просвечивать стальные материалы толщиной 5...120 мм. Такая аппаратура состоит из трех основных частей: переносного (транспортабельного) блока — трансформатора с рентгеновской трубкой, переносного пульта управления чемоданного типа, комплекта соединительных низковольтных кабелей, трубопроводов или шлангов, применяемых при охлаждении блока трансформатора.
Контрольно-измерительная часть представляет собой группу приборов, которые служат для измерения и регулирования времени, тока, напряжения и частоты. Величина высокого напряжения, подаваемого на электроды рентгеновской трубки, составляет 100...400 кВ. С увеличением напряжения осуществляется смещение максимума излучения в сторону коротких волн, увеличивается проникающая способность излучения.
Рентгеновский излучатель, помимо рентгеновской трубки, включает защитный кожух, заполненный изолирующей средой — трансформаторным маслом или газом под давлением, а также коллиматор _ устройство, предназначенное для формирования пучка направленного излучения.
Радиоактивные источники -излучения применяются в гамма-дефектоскопии и поставляются в ампулах, транспортируемых в специальных контейнерах. В качестве радиоактивных источников обычно используются изотопы Сo60, Sе75, Ir192. Появление таких сравнительно дешевых радиоактивных источников привело к созданию специальных комплектов оборудования, названных гамма-дефектоскопами. Различают гамма-дефектоскопы для фронтального и панорамного просвечивания, а также универсальные шланговые гамма-дефектоскопы. Гамма-дефектоскопы первого типа представляют собой лишь излучающую радиационную головку, устанавливаемую в зону контроля и снабженную механизмом открывания и закрывания затвора. Наибольшее применение нашли универсальные приборы шлангового типа, состоящие из радиационной головки, шланга-ампулопровода, пульта управления с механизмом перемещения ампулы с радиоактивным источником по ампулопроводу и коллимирующей насадки. В этих аппаратах ампула радиоактивного источника излучения из радиационной головки подается по ампулопроводу с помощью гибкого троса, приводимого от дистанционного пульта с ручным или электрическим приводом. Наличие дистанционного привода позволяет свести до минимума радиоактивное облучение оператора за счет его удаления от источника излучения на 12 м и более.
Структурная схема шлангового дефектоскопа приведена на рис. 6.1. На рис. 6.2 показаны радиационные головки некоторых отечественных шланговых дефектоскопов, а на рис. 6.3 — типовое оборудование гамма-дефектоскопии с дистанционным пультом управления. Основным элементом радиационных головок является защитный урановый кожух, смонтированный внутри корпуса и предназначенный для защиты обслуживающего персонала от радиоактивного излучения.
В табл. 6.1 приведены для сравнения основные характеристики современных отечественных шланговых гамма-дефектоскопов.
В отличие от рентгеновских аппаратов гамма-дефектоскопы могут эксплуатироваться без источников энергии, что особенно важно в полевых условиях. Их также часто применяют для контроля закрытых объектов сложной формы, когда невозможно установить излучатели рентгеновских аппаратов.
Рис. 6.1. Структурная схема шлангового гамма-дефектоскопа:
1 — дистанционный пульт управления; 2 — крышка с блокиратором; 3 — радиационная головка; 4 — ампулодержатель; 5 — ампула с радиоактивным источником; 6 — блокиратор; 7 — защитный урановый стержень; 8 — шланг; 9 — коллимируюшая насадка; 10 — фильтр коллимируюшей насадки
Недостатками гамма-дефектоскопов являются: необходимость периодической замены источников излучения, потерявших активность, ограниченные возможности по регулированию режимов работы, а также более низкий контраст радиографических снимков по сравнению с рентгеновскими.
Достарыңызбен бөлісу: |