7.7. Магнитная структуроскопия
Все изменения в структуре материала в процессе его изготовления, обработки, зарождения и развития повреждений отражаются в соответствующих изменениях магнитных и электрофизических параметров. Появление этих изменений объясняется разворотом и перемещением доменов и междоменных границ, составляющих в совокупности доменную структуру материала. В основу методов магнитной структуроскопии положена корреляция между некоторыми магнитными и физико-механическими свойствами материалов, когда они одновременно зависят от одних и тех же факторов: химического состава, режима термообработки, напряженного состояния, накопления усталостных повреждений и др. По использованным магнитным информативным параметрам различают следующие раз-новидности магнитной структуроскопии:
ферритометрия;
коэрцитиметрия;
контроль по остаточной намагниченности;
контроль по магнитной проницаемости;
контроль по магнитным шумам.
Наибольшее распространение нашли две первые разновидности магнитной структуроскопии.
Ферритометрия применяется для контроля ферритной фазы, повышенное содержание которой снижает трещиностойкость сталей и особенно сварных соединений. Содержание этой фазы определяет магнитную проницаемость материала, поэтому для ее определения измеряют магнитное сопротивление. Измерительным элементом ферритометра является одно- или двухполюсный феррозондовый магнитный преобразователь, содержащий возбуждающую и измерительную катушки. Магнитный поток, создаваемый возбуждающей катушкой феррозонда, зависит от магнитного сопротивления участка объекта контроля, определяемого содержанием ферритной фазы. Поэтому ее величину оценивают по ЭДС, наведенной при этом в измерительной катушке. Градуировка ферритометров производится по эталонным образцам с известным содержанием ферритной фазы. Большую погрешность при измерении может внести изменение зазора между преобразователем и поверхностью объекта контроля, а также геометрия этой поверхности (край, кривизна).
Наиболее широко в структуроскопии используется зависимость между твердостью углеродистых и низколегированных сталей и их силой. Твердость в свою очередь определяется температурой закалки и отпуска, что позволяет использовать коэрцитивную силу для контроля режимов термообработки стали.
В последние годы коэрцитиметрия стала широко применяться для контроля напряженного состояния металлоконструкций опасных производственных объектов различного назначения, что является весьма актуальным для технической диагностики. Так, ЗАО «ИКЦ КРАН» (г. Москва) совместно с научно-производственной фирмой «Специальные научные разработки» (г. Харьков, Украина) под руководством Б.Е. Попова разработали методику, создали аппаратуру и подготовили согласованный с Госгортехнадзором РФ нормативный документ: РД ИКЦ «КРАН» 009-99 «Магнитный контроль напряженно-деформированного состояния и остаточного ресурса сосудов, работающих под давлением, при проведении экспертизы промышленной безопасности». Данная методика позволяет по величине коэрцитивной силы Нс определить действующие напряжения в упруго-пластической области, степень деформации и остаточный ресурс металлоконструкций при циклическом нагружении. Установлено, что микро- и макродефекты структуры углеродистых и малолегированных сталей, накапливаясь в процессе циклического нагружения, как бы собирают и хранят информацию, однозначно связанную с максимальными величинами действовавших нагрузок, в результате чего структура доменов выполняет функции магнитной памяти повреж-денности металла. Согласно теории Е.И. Кондорского, изменения внутренних напряжений и связанная с ними деформация материала , вызывают смещение доменных границ и необратимое намагничивание, характеризуемое пропорциональными изменениямикоэрцитивной силы
,
Где – изменение линейных размеров – магнитострикция; - абсолютная магнитная проницаемость; - намагниченность; - среднее значение амплитуды внутренних напряжений; - толщина границы доменов; L - длина волны напряжения в металле.
Коэрцитивная сила Hс, представляющая собой напряженность Магнитного поля, необходимая для уменьшения намагниченности До нуля, является более информативным параметром, так как связана с магнитной энергией и внутренним полем анизотропии, различным для каждого типа стали. Величина Нс наряду с начальным и приложенным напряжениями определяется тонкой структурой металла и зависит от химического и фазового состава, размера зерна, плотности дислокаций, внутренних напряжений и дислокаций.
При наличии корреляционной зависимости между Нс и остаточной пластической деформацией Епл по величине коэрцитивной силы можно вести контроль накопления упругопластических деформаций и повреждений в металле, а также усталостной прочности конструкций. Практически все виды традиционных низкоуглеродистых и малолегированных сталей, применяемые для изготовления объектов котлонадзора, а в равной степени и для объектов нефтегазовой промышленности, относятся к классу разупрочняемых, у которых значение Нс в состоянии поставки невысокое (2...6 А/см), а при эксплуатации текущая величина Нс возрастает до разрушения в 2—3 раза. Для таких сталей, как правило, существует устойчивая связь магнитных и механических свойств с коэффициентом корреляции не ниже 0,9. Для сталей типа СтЗ, Ст20, 09ГС2 и им подобных она может быть представлена линейной зависимостью вида
Достарыңызбен бөлісу: |