1-мысал. Атанаққа оралған жіпке ілінген жүк A, атанақты айнал-малы қозғалысқа келтіре отырып, тыныштық қалпынан бірқа-лыпты үдемелі төменгі бағытта қозғалады. Атанақ бірінші 3 сек аралығында 9 айналым жасайды. Атанақтың диаметрі см.
Атанақ бетіндегі нүктенің 5 сек уақыт мезгіліндегі жылдам-дығын және үдеуін табу керек (2.18-сурет).
а) б)
2.18-сурет.
Шешуі. Атанақтың бірқалыпты айнымалы айналмалы қозғалыс теңдеуін жазамыз:
. (1)
Бұрыштық жылдамдықтың айналу өсіндегі проекциясы айналу бұрышы (1)-ден уақыт бойынша алынған туындыға тең:
. (2)
Бастапқы мәндері: 0=0, 0=0. Осы шарттарды ескере отырып (1) және (2) – теңдеулерді мына түрде жазамыз:
, (3)
(4)
t=3с уақыт мезгілінде =9 айналыс болғандықтан, (3) – теңдеуден бұрыштық үдеу – ді табамыз:
.
(4)–теңдеуден мезгіліндегі атанақтың бұрыштық жылдамдығы -ны табамыз:
.
Атанақтың бетіндегі B нүктесінің (14,б-сурет) сызықтық жылдамдығын, жанама және нормаль құраушы үдеулерін осы уақыт мезгілінде анықтаймыз:
м/с,
м/с2,
м/с2.
Атанақтың бетіндегі нүктенің толық үдеуінің модулі:
м/с2.
Жүктің жылдамдығы атанақтың бетіндегі нүктенің сызық-тық жылдамдығына тең:
м/с.
Жүктің үдеуі атанақтың бетіндегі нүктенің жанама құраушы үдеуіне тең:
м/с2.
2-мысал. Радиусы r1 тістегеріш 1-ге отырғызылған радиусы r валды жүк В айналмалы қозғалысқа келтіреді. Жүк тыныштық қалпынан қозғала бастайды және тұрақты ā үдеумен қозғалады. Тістегеріш 1-мен іліністе болатын радиусы r2 тістегеріш 2-нің қозғалыс заңдылығын табу керек.
Шешуі. Жүк В (15-сурет) бастапқы жылдамдықсыз тұ-рақты ā үдеумен қозғала бас-тайды, сондықтан кез келген мезгілінде болады. Валдың бетіндегі нүкте жыл-дамдығы осы жылдамдыққа және 1r-ге тең. Сондықтан:
1r = at, .
2-ні табамыз. Іліністегі нүкте С-ның сызықтық жылдам-дығы екі тістегерішке ортақ:
,
осыдан:
.
Осы теңдіктің екі жағында -ға көбейтіп алу арқылы, мынадай теңдік аламыз:
.
Бұны 0-ден 2-ге және 0-ден t-ға дейінгі шектерде интегралдай отырып, тістегеріш 2-нің бірқалыпты айнымалы айналмалы қозғалыс заңдылығын табамыз:
2. ДИНАМИКА
Достарыңызбен бөлісу: |