Электроника является универсальным и исключительным средством при решении проблем в самых различных областях. Сфера её применения постоянно расширяется


Ток питания, мА…………………………………………………..1



бет9/20
Дата03.01.2022
өлшемі382.89 Kb.
#450946
1   ...   5   6   7   8   9   10   11   12   ...   20
Электронные системы контроля температуры объектов

Ток питания, мА…………………………………………………..1


Выходное напряжение, мВ, при токе питания 1мА и температуре

298К(25С)……………………………………..2952…3012

398К(125С)……………………………………3932…4032

228К(-45С) для К1019ЕМ1…………………..2232…2332

Предельно допустимый эксплуатационный режим


Ток питания, мА…………………………………………0,5…1,5

Рабочий температурный интервал, С…………………. – 45….+125

Благодаря малому дифференциальному сопротивлению датчика его можно питать от источника напряжения (не менее 10 В) через последовательный резистор, сопротивление которого в килоомах должно быть на 3 кОм меньше значения напряжения Uпит в вольтах.

На рис. 2.3. представлена типовая зависимость выходного напряжения от температуры окружающей среды.


Рис. 2.3. Типовая зависимость выходного напряжения от температуры окружающей среды

2.2 Функциональная схема и принцип работы преобразователя КР572ПВ2А

Назначение АЦП КР572ПВ2 – преобразование напряжения аналогового сигнала в цифровую форму для последующего отображения уровня сигнала цифровым индикатором. Прибор рассчитан на совместную работу с жидкокристаллическим четырехразрядным цифровым индикатором.



Микросхему КР572ПВ5 изготовляют по технологии КМОП.

Преобразователь (рис. 2.4.) состоит из аналоговой и цифровой частей. Аналоговая содержит электронные выключатели S1-S11, буферный ОУ DA1, работающий в режиме повторителя, интегратор на ОУ DA2, а также компаратор DA3. В цифровую часть входят генератор G1, логическое устройство DD1, счетчик импульсов DD2, регистр памяти с выходным дешифратором DD3.

В преобразователе использован принцип двойного интегрирования, в соответствии с которым вначале разряженный интегрирующий конденсатор Синт заряжают определенное время током, пропорциональным измеряемому напряжению, а затем разряжают определенным током до нуля. Время, в течение которого происходит разрядка конденсатора, будет пропорционально измеряемому напряжению. Это время измеряют с помощью счетчика импульсов; с его выхода сигналы подают на индикатор.

Рис. 2.4. Принципиальная схема преобразователя КР572ПВ2А


На вход преобразователя (выв. 30 и 31) подают измеряемое напряжение Uвх, а на выв. 36 и 35 – образцовое Uобр. Цикл измерения (рис. 2.5.) состоит из трех этапов – интегрирования сигнала, т.е. зарядки интегрирующего конденсатора (ЗИК), разрядки интегрирующего конденсатора (РИК) и автоматической коррекции нуля (АКН). Каждому этапу соответствует определенная коммутация элементов преобразователя, выполняемая выключателями S1-S11 на транзисторах структуры МОП. На схеме рис. 1 надписи у выключателей обозначают этап, в течение которого «контакты» замкнуты. Длительность этапа, точно задаваемая счетчиком DD2 пропорциональна периоду тактовой частоты fт.


Рис. 2.5. Цикл измерения преобразователя КР572ПВ2
В течение этапа ЗИК, длящегося 4000 периодов тактовой частоты, входной сигнал через выключатели S1, S2 и буферный усилитель DА1 поступает на вход интегратора DА2. Это вызывает на конденсаторе Синт накопление заряда, пропорционального и соответствующего по знаку приложенному входному напряжению. Напряжение на выходе интегратора DА2 изменяется с постоянной скоростью, пропорциональной входному сигналу.

Предположим, что к началу этапа ЗИК заряд на конденсаторах Синт и Сакн и напряжение смещения нуля ОУ DА1 – DA3 равны нулю (Сакн – запоминающий конденсатор узла автоматической коррекции «нуля»). Так как входной ток интегратора DА2 мал, изменения напряжения на конденсаторе САКН не происходит, и он фактически не оказывает влияния на процесс интегрирования. Конденсатор Собр остается с предыдущего цикла заряженным от источника образцового напряжения до Uобр. В конце этапа ЗИК компаратор DA3 определяет знак входного напряжения по знаку напряжения на выходе интегратора DА2. Чувствительность компаратора DA3 такова, что он правильно определяет полярность входного сигнала, даже если сигнал существенно меньше единицы отсчета.

При работе преобразователя на этапе РИК входной сигнал на интегратор DА2 не поступает. К его входу выключатели S7, S8 или S6, S9 присоединяют заряженный до образцового напряжения конденсатор Собр, причем в такой полярности (этим и обусловлен выбор той или иной пары выключателей), при которой происходит разрядка конденсатора Синт.

Разрядка длится до тех пор, пока конденсатор Синт не разрядится полностью, т.е. напряжение на выходе ОУ DА2 не станет равным нулю. В этот момент подключенный параллельно конденсатору Синт компаратор DA3 срабатывает и завершает этап РИК. Заряд конденсаторов Собр и Сакн практически не изменяется. Время разрядки конденсатора Синт, выраженное числом периодов тактовых импульсов, и есть результат измерения, записанный в счетчике DD2. Состояние счетчика переписывается в регистр DD3, а затем после дешифрации в семиэлементный код сигналы поступают на индикатор.

При знаке напряжения Uвх, противоположном указанному на рис. 1, элемент g1 индикатора НG1 индицирует знак «минус». При перегрузке на табло остается лишь цифра 1 в старшем разряде и знак «минус» (для отрицательного напряжения).

Этап АКН начинается с прекращения работы счетчика DD2, когда логическое устройство DD1 «замыкает контакты» выключателей S3, S4 и S11. Образовавшаяся при этом следящая система обеспечивает зарядку конденсаторов Синт и Сакн до напряжения, компенсирующего смещение «нуля» операционных усилителей DА1-DA3. Оно остается неизменным в течение двух последующих этапов ЗИК и РИК. В результате приведенная ко входу погрешность из-за смещения «нуля» и его температурного дрейфа не превышает10 мкВ.

Работой всех узлов преобразователя управляет встроенный тактовый генератор. Частота следования его импульсов определяется внешними элемента Rг и Сг. Для подавления сетевых помех с значениями частоты, кратными 50 Гц, тактовую частоту следует выбирать такой, чтобы во время интегрирования, равное 4000 периодов тактового генератора Тг, укладывалось целое число Nс периодов сетевого напряжения (длительность сетевого периода равна 20 мс).

Таким образом, 4000ТТ = 20 Nс мс, где Nс = 1, 2, 3 и т.д. Отсюда, fт = 1/TТ = = 200/NС кГц, т.е. 200, 100, 67, 50, 40 кГц; меньшие значения обычно не используют. Номиналы частотозадающих цепей тактового генератора рассчитывают по формуле Сг = 0,45/fт • Rг. Для повышения стабильности частоты между выводами 39 и 40 может быть включен кварцевый резонатор (при этом элементы Rг и Сг не нужны). При работе преобразователя от внешнего генератора тактовые импульсы подают на выв. 40; выв. 38 и 39 при этом остаются свободными

Пределы входного напряжения устройства зависят от образцового напряжения Uобр

И определяются соотношением Uвх max=+-1,999Uобр. Текущие показания индикатора должны выражаться числом, равным 1000Uвх./Uобр, однако на практике они ниже на 0,1…0,2%.Период измерений при тактовой частоте 50кГц равен 320 мс. Иначе говоря, прибор производит 3 измерения в секунду.


Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   20




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет