11. Некоторые вопросы познания в современной физике
В этом разделе речь пойдет о познавательных возможностях современной физики, направленных главным образом на объяснение явлений микромира, и проблеме объяснения феномена сознания с помощью физики.
11.1. Кошка Шредингера или как может существовать стабильный мир на нестабильном основании
Что дает квантовая теория для познания
Классическая физика в согласии со здравым смыслом рассматривает объективный мир существующим вне наблюдателя. Это верно не только для механики Ньютона, но и для подходов в электродинамике и теории относительности. Процессы происходят независимо от нас, да и сами мы телесно являемся частью этого мира и, следовательно, подчиняемся его законам. Квантовое описание является точным, хотя и радикально отличающимся от классического. Кроме того, вероятностный характер описания не возникает на микроуровне, т.к. движение атомов, молекул происходит детерминировано, а появляется, в результате некоторого загадочного крупномасштабного действия по переводу проявлений микромира на язык, доступный нашим ощущениям. Само существование твердых тел, упругость и другие свойства материалов, химические свойства, цвет вещества, устойчивость наследственности – эти и многие другие знакомые нам явления невозможно объяснить без привлечения квантовой теории.
Возможно, что и феномен сознания есть нечто, что невозможно объяснить без привлечения квантовых представлений. Для того чтобы основательно углубиться в философские вопросы и понять, как ведет себя наш мир и каково строение «разума», т.е. «нас самих», следует ближе познакомиться с возможностями квантовой теории. И здесь существуют разные точки зрения. Последователи Нильса Бора утверждают, что объективной картины реального мира не существует. Самого по себе ничего нет, а реальность возникает только в связи с результатами измерений. Квантовая механика нужна только как вычислительная процедура. Позитивистский взгляд иной: объективная физическая реальность может быть описана квантовым состоянием. Существует точное уравнение Шредингера, которое описывает полностью причинно обусловленную эволюцию этого состояния. Сам измерительный прибор, в конечном счете, тоже состоит из квантовых составляющих и поэтому должен эволюционировать в соответствии с уравнением Шредингера. Можно предположить, что и сами наблюдатели построены из крохотных квантовых частиц. Является ли сознание необходимой частью процесса измерения? Лишь немногие отвечают на этот вопрос положительно.
Атомы могли излучать свет только определенного набора частот, в виде четких спектральных линий. Но система полей и частиц в классической теории должна быть нестабильной: энергия «перетекает» от частиц к полям, которые имеют бесконечно большое число степеней свободы. Так что, как показали в свое время Релей и Джинс (1900 г.), вся энергия частиц должна быть до конца «высосана» полем. Этот физически абсурдный результат получил название «ультрафиолетовой катастрофы», при которой энергия безостановочно перетекает во все более высокочастотные колебания поля, в то время как в действительности природа не ведет себя так расточительно.
Интенсивность
Релей-Джинс
Планк и
наблюдения
Частота
Рис.6.1. Расхождение между интенсивностью излучения абсолютно черного тела в классической теории (Релей-Джинс) и наблюдаемой интенсивностью привели Планка к кванту действия
В отличие от предсказаний Релея и Джинса, максимальное значение энергии при данной температуре приходится на определенную длину волны и поэтому цвет нагретого тела зависит от его температуры.
Эксперимент с двумя щелями
Рассмотрим «архетипичный» квантово-механический эксперимент, при котором пучок электронов, света или других «волн-частиц» направляется сквозь две узкие щели на расположенный позади них экран. Когда открыта не одна, а две щели, наблюдается волнообразное распределение интенсивности. Картина освещенности при двух щелях сильно отлична от той, которая наблюдается при одной щели. В тех точках, где освещенность максимальна, она превосходит освещенность при одной щели не в два, а в четыре раза. В точках минимума она падает до нуля (при двух щелях). Как могло случиться, что, предоставив фотону альтернативный маршрут, мы в действительности воспрепятствовали его прохождению по любому из маршрутов?
Если принять в качестве «размера» фотона длину его волны, то в масштабах фотона вторая щель находится от первой на расстоянии около 300 размеров фотона. А ширина каждой щели составляет около двух размеров фотона. Каким образом фотон, проходя через одну из двух щелей, узнает о том, открыта или закрыта другая щель? В некотором смысле каждая частица проходит сразу через обе щели и интерферирует сама с собой (при малой интенсивности света).
Рис. 6.2. Тени отбрасываемые перегородкой с (а) четырьмя и (b) двумя параллельными щелями (по книге Д. Дойча «Структура реальности», рис. 2.7)
Бор, по-видимому, считал, что состояние системы микрочастиц между измерениями не обладает настоящей физической реальностью, а действует лишь как свод знаний некого субъекта о рассматриваемой системе. Тогда волновая функция превращается во что-то субъективное или целиком существует в уме физика. Поэтому Бору пришлось рассматривать мир на классическом уровне как действительно обладающий объективной реальностью. Но в состояниях на квантовом уровне, которые, казалось бы, лежат в основе всего, никакой реальности он не усматривал.
Такая картина была неприемлема для Эйнштейна, который был глубоко убежден в том, что объективный физический мир должен действительно существовать, даже на микроскопических масштабах квантовых явлений. В своих многочисленных дискуссиях с Бором Эйнштейн пытался доказать, но неудачно, что квантовой картине присущи внутренние противоречия, и что за квантовой теорией должна стоять какая-то более глубокая структура. Возможно, вероятностное поведение квантовых систем служит проявлением статистических эффектов более малых компонентов системы, о которых мы не располагаем непосредственным знанием. Последователи Эйнштейна, в особенности Давид Бом, развили высказанную им идею о скрытых переменных, согласно которой параметры, точно определяющие систему, не доступны нам непосредственно, и квантовые вероятности возникают из-за того, что значения этих параметров неизвестны до измерения. Согласуется ли теория скрытых переменных со всеми наблюдаемыми фактами квантовой физики? Похоже, что ответ на этот вопрос должен быть утвердительным, но только если эта теория по существу нелокальна в том смысле, что скрытые параметры должны иметь возможность мгновенно влиять на элементы системы в сколь угодно далеких областях. Такая ситуация не понравилась бы Эйнштейну, особенно в связи с возникающими трудностями в специальной теории относительности.
Кошка Шредингера
Любая часть измерительного устройства сама является частью физического мира и состоит из тех же самых кантовомеханических компонент, поведение которых должен исследовать измерительный прибор. В известном смысле измерение составная система производит над собой. Противоречие в сказанном особенно ярко проявляется в мысленном эксперименте, предложенном Эрвином Шредингером.
Представьте себе герметичный контейнер, через который ни внутрь, ни наружу не проходит ни одно внешнее воздействие. Предположим, что внутри контейнера находится кошка, а также устройство, приводимое в действие (запускаемое) некоторым квантовым событием. Если это событие происходит, то устройство разбивает ампулу с синильной кислотой, и кошка гибнет. Если событие не происходит, кошка продолжает жить. В первоначальной версии Шредингера квантовым событием, запускающим устройство, был распад радиоактивного атома. Выберем вслед за Пенроузом в качестве квантового события, запускающего устройство, фотон, который, попадая в фотоэлемент, приводит его в действие. Этот фотон отражается от полупосеребренного зеркала. Отражение от зеркала расщепляет волновую функцию фотона на две части, одна из которых отражается, а вторая проходит сквозь зеркало. Для внешнего наблюдателя кошка действительно есть не что иное как линейная комбинация живой и дохлой кошек, и только когда контейнер будет, наконец, вскрыт, вектор состояния кошки коллапсирует в вектор одного из этих двух состояний. С другой стороны для внутреннего наблюдателя (защищенного надлежащим образом от действия синильной кислоты) вектор состояния кошки коллапсировал бы гораздо раньше и линейная комбинация внешнего наблюдателя не имела бы смысла.
Различные точки зрения на существующую квантовую теорию
Нередко говорят, что трудности с интерпретацией исчезли бы, если бы мы более полно учли требования опыта. Действительно, полностью изолировать содержимое контейнера от внешнего мира невозможно. Следовательно, вектор состояния будет искажен. Можно прийти и к другой точке зрения о том, что законы квантовой линейной суперпозиции неприменимы к сознанию (речь идет о двух наблюдателях). Так Э. Вигнер предположил, что линейность уравнения Шредингера может нарушаться для существ, наделенных сознанием (или просто живых существ), и это уравнение подлежит замене на некоторую нелинейную процедуру, согласно которой та или иная из альтернатив должна быть отброшена.
Существует другая точка зрения, связанная в чем-то с предыдущей, которая сводит роль сознания к другому (противоположному) пределу. Она была выдвинута Джоном Уилером в 1938 г. и получила название соучаствующей (партисипаторной) вселенной. Эволюция сознательной жизни на нашей планете обусловлена подходящими мутациями, происходившими в различное время. Предположительно это были квантовые события, поэтому они могли бы сосуществовать как линейные суперпозиции до тех пор, пока не довели эволюцию до мыслящих существ, само существование которых зависит от всех «правильных» мутаций, имевших место в свое время. Именно наше присутствие, согласно этой идее, вызывает к жизни наше прошлое.
Другая точка зрения, тоже по-своему логичная, но приводящая к не менее странной картине – так называемая картина множественности миров, впервые выдвинутая Хью Эвереттом (1957). Здесь мир внутреннего наблюдателя сопоставляется с миром внешнего. Трудность этой гипотезы состоит в том, что нет разработанной теории сознания, хотя и экономичность гипотезы тоже под вопросом (экономия мышления, по Маху? – А.Р.).
Вывод из сказанного, который мы делаем вместе с Пенроузом, может быть таким. На субмикроскопическом уровне квантовые законы действительно работают, но на уровне крикетных шаров действует классическая механика. Где-то между ними находится закон, который нам непременно понадобится, если мы хотим понять, как функционирует наш разум.
Кроме того, следует признать, что, несмотря на безупречную работу ее математического аппарата, объяснение квантово-механических (микроскопических) событий не является единственным и представляет собой проблему.
11.2. Законы сохранения в физике
Так называют физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определенном классе процессов. Законы сохранения дают иногда возможность сделать заключение о поведении во времени системы, для которой неизвестен или слишком сложен описывающий ее динамический закон. Важнейшими ЗС, справедливыми для любых изолированных систем, являются законы сохранения энергии, импульса, углового момента, электрического заряда. О законах сохранения упоминалось и раньше. Здесь подводится итог сказанному.
Большое значение ЗС имеют в квантовой теории, в частности в теории элементарных частиц. Они определяют правила отбора, согласно которым невозможны те реакции, которые ведут к нарушению ЗС. Перечисленные ЗС справедливы в физике макромира (см. ниже материал о теореме Нётер). В дополнение к ним в теории элементарных частиц возникло много специфических ЗС, позволяющих интерпретировать наблюдаемые на опыте правила отбора. Таков, например, закон сохранения барионного числа, выполняющийся с очень высокой точностью во многих видах фундаментальных взаимодействий. Существуют и приближенные ЗС, выполняющиеся в одних видах взаимодействий и нарушающиеся в других. Например, закон сохранения странности, изотопического спина40, пространственной четности строго выполняются в процессах, протекающих за счет сильного взаимодействия, но нарушаются в процессах слабого взаимодействия. Электромагнитное взаимодействие нарушает закон сохранения изотопического спина. ЗС тесно связаны со свойствами симметрии физических систем. При этом симметрия понимается как инвариантность физических законов относительно некоторой группы преобразований входящих в них величин. Т.о., если известны свойства симметрии системы, можно найти для нее ЗС и наоборот.
Так сохранение энергии связано с однородностью времени, т.е. с инвариантностью физических законов относительно изменения начала отсчета времени. Сохранение импульса и момента связаны соответственно с однородностью пространства (инвариантность относительно пространственных сдвигов) и изотропностью пространства (инвариантность относительно вращений пространства). Поэтому проверка механических ЗС является проверкой соответствующих фундаментальных свойств пространства-времени. Долгое время считалось, что кроме перечисленных элементов симметрии пространство-время обладает зеркальной симметрией, т.е. инвариантно относительно обращения (инверсии) времени. Тогда должна была бы сохраняться пространственная четность. Однако в 1957 г. было экспериментально обнаружено несохранение четности в слабом взаимодействии, поставившее вопрос о пересмотре взглядов на глубокие свойства геометрии мира. В связи с развитием теории гравитации намечается дальнейший пересмотр взглядов на симметрию пространства-времени и фундаментальные ЗС (в частности на законы сохранения энергии и импульса).
Теорема Нётер утверждает, что для всякой физической системы, уравнения движения которой могут быть получены из вариационного принципа, каждому однопараметрическому непрерывному преобразованию, оставляющему вариационный функционал инвариантным, отвечает один закон сохранения. Теорема позволяет выписать сохраняющуюся величину. Установлена в работах ученых гёттингенской школы Давида Гильберта, Феликса Клейна, и Эмми Нётер. Теорема Нётер представляет собой самое универсальное средство, позволяющее находить законы сохранения в лагранжевой классической механике, теории поля, квантовой теории и т.д.
11.3. Аксиоматическое построение физических теорий
Аксиоматическая теория – это теория, результаты которой выступают как строгие следствия единой системы фундаментальных физических представлений – аксиом. В отличие от математики физика не сразу строится в виде аксиоматического формализма. Если в математике система объектов и система аксиом для них прямо берутся в качестве исходных данных теории, то в физике исходят из определенного запаса экспериментальных фактов и некоторой совокупности закономерностей, подмеченных в этих фактах. Участники изучаемой области явлений могут существенно различаться. Эти участники сначала описываются различными теоретическими схемами, которые часто не вполне согласуются между собой и, кроме того, являются приближенными. На таком этапе теория еще не подготовлена к ее представлению в строгой аксиоматической форме.
Лишь когда установлены главные закономерности, управляющие данной областью явлений, выяснена степень их общности и точные закономерности отделены от приближенных, становится целесообразным выразить их в виде системы фундаментальных аксиом и представить основные результаты теории как строгие следствия из этой системы аксиом. Таким образом, «если в математике мы аксиоматизируем, чтобы понять, то в физике нам нужно сначала понять, чтобы аксиоматизировать» (Ю. Вигнер).
Последовательность «операций» покажем на примере формирования квантовой теории поля, которое происходило в середине 1950-х гг. Сначала выбираются исходные физические объекты, в терминах которых и идет дальнейшее развитие теории. Затем находится (а иногда и строится заново) математический аппарат, пригодный для описания объектов. И, наконец, последние два этапа – формулировка системы аксиом и вывод следствий из них.
Любая физическая теория как квантовая, так и классическая может быть представлена в форме локальных наблюдаемых. В основе АКТП (аксиоматической квантовой теории поля) лежат 3 аксиомы, которые являются одними и теми же для различных направлений этой теории.
1. Аксиома релятивистской инвариантности (неизменность физических законов относительно преобразований Лоренца) для инерциальных систем;
2.Аксиома локальной причинности требует, чтобы некое событие, происшедшее в физической системе, могло повлиять на поведение системы лишь в моменты времени, следующие за этим событием;
3. Аксиома спектральности, которая утверждает, энергии всех допустимых состояний системы (ее спектр энергий) должны быть положительны. Эта аксиома утверждает фундаментальный факт положительности масс всех частиц, подтверждаемый всей физической практикой.
Достарыңызбен бөлісу: |