22.
Мы рассмотрели два из поставленных выше вопросов и наметили примерные пути их разрешения. Но остается еще третий вопрос: сохраняет ли анализируемый процесс мысли свое Т-образное строение при разложении на двухплоскостные единицы, или, иными словами, раскладывается ли он при них по-прежнему на основной и краевые процессы? Обсудим его.
Предыдущий анализ привел нас к выводу, что рассматриваемый процесс мысли состоит из шести как бы приложенных друг к другу краевых процессов. То, что объединяет, связывает их в одно целое, есть так называемая «основная линия» процесса. Но в этой основной линии не оказалось собственно процесса мысли. Это лишь цепь формальных математических соотношений, в соответствии с которой после того, как она получена, совершаются формальные преобразования и формальный «перенос» численного значения. Каждое из математических соотношений, как мы выяснили, должно иметь свое основание в определенных взаимосвязях элементов чертежа и соответственно в определенные мыслительных движениях, во-первых, по чертежу, а во-вторых, от чертежа к формальным словесно-алгебраическим или словесно-арифметическим соотношениям. В этих движениях, предположили мы, и заключено собственно мыслительное движение. Наглядно-символически итог нашего анализа можно изобразить в такой схеме:
где верхние вертикальные линии выражают формальные соотношения, а нижние — содержательное движение в чертежах. Но этот итог является во многом парадоксальным. Ведь, если соотношения, лежащие в верхней плоскости, связаны, а их основания, изображенные внизу, не связаны, то основание этой связи должно быть заключено либо в самих этих соотношениях, либо еще в каком-то третьем образовании, являющемся необходимым элементом процесса мысли, но лежащем в какой-то третьей плоскости, нами еще не обнаруженной. Но в самих отношениях, как легко увидеть, не может быть основания для связи. Это основание должно лежать где-то вне. Предположение, что такое основание лежит в самой задаче — установить непрерывную цепь соотношений — тоже не может быть принято: задача является, конечно, необходимым условием установления такой связи, но сама связь может быть установлена только в деятельности с определенными объектами и должна иметь определенные объективные основания. Значит, если чертежи являются здесь объектами, то в их взаимоотношениях и связях нужно искать основание связи словесно-алгебраических соотношений. Таким образом, если каждое соотношение из их цепи имеет свое содержательное основание, причем сами по себе эти соотношения не связаны, то вполне оправданным является предположение, что между самими этими содержательными основаниями существуют связи, что именно они должны образовывать исходную цепь.
Кроме того, при таком понимании процесса мысли, которое изображено на предыдущей схеме, исчезает целостность рассматриваемого процесса мысли именно как движения. Продукты его связаны, а сам он представляет разрозненную «кучу»; мы теряем целостность самого движения и те факторы, которые определяют переходы от одних взаимосвязей элементов чертежа к другим.
Но если мы признаем наличие такой связи в «нижней плоскости» оснований, то мы, по существу, зачеркнем весь принцип разложения процесса мысли на основную и краевые линии. Весь процесс будет представлять собой пусть внутри очень сложное, но с внешней стороны цельное единонаправленное движение вида:
Обращение к эмпирическому материалу текста убеждает, что такая целостность и связь процесса мысли должны быть.
Возьмем хотя бы первый краевой процесс: «Из подобия треугольников SLT и TEH следует...». Но откуда берутся подобные треугольники, или, точнее, как устанавливается подобие этих треугольников? Оказывается, что треугольник TEH с самого начала строится так, чтобы быть подобным треугольнику SLT. Чем это определяется? И мы можем предположить лишь один ответ: во-первых, в какой-то мере задачей переведения, но безусловно, во-вторых, и общим планом решения задачи, который обязательно должен включать в себя общий план движения в чертежах.
Правда, здесь мы встаем перед исключительно важной проблемой: что представляет собой это движение в «плане решения» задачи, из чего оно возникает и какие специальные символические средства предполагает? Но это уже другая, побочная проблема, а сейчас нам важно подчеркнуть саму зависимость построения подобного треугольника от других «шагов» процесса, в том числе «шагов» в чертежах.
Во втором краевом процессе мы также обнаруживаем весьма характерную вещь. Предложение «Так как FE < TH» имеет своим основанием чисто наглядные соображения и функциональные определения: «TH — наклонная, TE — перпендикуляр» или «TH — гипотенуза, TE — катет». Точно так же — и предложение «FE = TE» (как стороны квадрата). Но именно здесь отчетливо обнаруживается, что все эти определения идут по построению, и как бы «обратным ходом», т.е. построение, очевидно, производилось именно так, чтобы можно было получить эти определения.
В следующем краевом процессе применяется прием среднего пропорционального. Аристарх вводит новые чертежные элементы и вводит их именно затем, чтобы создать непрерывную цепь взаимоотношений в чертежах. Все изложение материала в тексте исходит из уже готовых, построенных фигур, находящихся в определенных отношениях друг к другу, именно тех, которые нужны для решения задачи. Но само построение ведь тоже должно было осуществляться в соответствии с какими-то определенными факторами, с помощью каких-то соображений, и, очевидно, в этих соображениях должна была быть какая-то определенная закономерность. Иначе говоря, и здесь все основное задается построением, и именно порядок построения задает, по-видимому, специфику данного способа решения задачи, выделяет новое содержание, в том числе новые связи. Именно это нужно исследовать, чтобы понять закономерность процесса решения задачи.
Вместе с тем именно в этом кусочке процесса мысли особенно отчетливо выступает связь «чертежных движений» и формальных соотношений, фиксирующих их результаты, и даже более того — известная зависимость первых от вторых. Одна из основных задач, очевидно, заключается в том, чтобы проанализировать эту зависимость.
В четвертом процессе («Но отношение отрезков GE и EH больше отношения дуг и значит ...») мы совершенно ясно видим, что достаточно получить определенные соотношения в чертежах («отрезки—дуги»), чтобы можно было записать соотношение во второй плоскости. Но откуда и как получается эта система чертежей?
Пятый переход вообще не фиксируется словесно: одна линия представляется как сумма своих частей.
Шестой случай («Но в треугольнике ETF линия TG биссектриса угла ETF, поэтому TF:TE = FG:GE. Но квадрат, построенный на диагонали TF, вдвое более квадрата, построенного на TE или ET») требует специального и подробного анализа, который мы здесь не будем проводить; нам достаточно убедиться, что и здесь в основании лежат определенные соотношения чертежных элементов, которые должны были быть заданы раньше построением. Но это совершенно очевидно, так как сложная система квадратов не возникает сама собой, а должна быть выбрана и построена.
Итак, все процессы мышления, выделенные нами первоначально в краевые линии, оказываются неорганизованными, беспредметными и совершенно мистическими, если мы рассматриваем их изолированно, обособленно от общего контекста процесса мысли и от исходной задачи. Верхняя, формальная линия соотношений сама по себе не дает связей; эти связи могут быть только в чертежном движении, а точнее — в процессе построения соответствующей системы чертежей. Но ведь нас интересует выделение целостных единиц в процессах мышления, которые затем можно будет употреблять в качестве эталонов разложения, и выявление законов построения сложных процессов мысли. Значит, мы можем и должны сделать вывод, что краевые процессы не могут быть такими единицами, а сам принцип анализа, приводящий к ним, ложен.
Но даже если мы примем идею изображения рассматриваемого процесса мысли как цельного, единонаправленного движения, то и тогда перед нами во всей остроте будет стоять вопрос: а каково внутреннее строение этого процесса, какова последовательность движений и на какие единицы — линейные или структурные и многомерные — нужно раскладывать этот процесс?
И, в частности, одним из основных вопросов будет тот, который мы уже наметили выше, рассматривая один из краевых процессов: в какой мере движение в чертежах, и именно построение, определяется характером словесно-алгебраических соотношений, которые нужно получить для решения задачи? Откуда идет собственно мыслительное движение — от чертежа к знанию или от необходимости получить определенное знание (в данном случае — цепь формальных соотношений) к чертежу?
Можно предположить, что задача ставится так: установить непрерывный ряд формальных соотношений. Средство ее решения — создание «чертежной» системы, в которой существовали бы такие отношения и связи между чертежными элементами, которые дают основание для искомой цепи словесно-алгебраических (или словесно-арифметических) соотношений. Движение мысли идет от задачи к средству и затем — от одних элементов средства к другим. Но, во-первых, собственно у Аристарха, по-видимому, не было такой сознательно сформулированной задачи. Он просто решал задачу — и прежде всего в ходе определенных «чертежных» построений и преобразований. Но действия с чертежами, в результате которых устанавливались определенные отношения между фигурами и их элементами, сопровождались действиями, в которых выделялось определенное содержание («больше», «меньше», «равно») и фиксировалось в тех самых знаках, в которых должно было быть получено решение задачи. Можно, по-видимому, предположить, что определенные действия сопоставления производились и в этой плоскости знаков, и их результаты также определяли выбор следующих шагов. Но они были лишь вторичными, хотя и важными элементами, и действия с ними не выступали еще в виде самостоятельной относительно замкнутой системы. Значит, если мы сейчас и можем ставить такую задачу — получить непрерывную цепь формальных соотношений, связывающую искомое с известными данными, то Аристарх, судя по всему, не ставил такой задачи: ему надо было установить эту цепь соотношений (точнее — взаимоотношений) в самих геометрических чертежах, установить так, чтобы искомое определялось через известное.
Чтобы понять, как этот способ решения превратился в более формальный и одновременно более компактный, свернутый, наш современный способ, нужно провести специальное генетическое исследование. Но уже то, что мы сейчас знаем, подтверждает основную для нас сейчас мысль, что у Аристарха движение шло, хотя и с учетом верхней плоскости и фиксируемых там результатов, но скорее в нижней плоскости самих чертежей, и именно там должны были фиксироваться в какой-то форме необходимые для решения задачи переходы от одних чертежных соотношений к другим.
Во-вторых, этот вывод подтверждается тем, что ведь сама цепь формальных отношений, ее состав, определяется возможностями чертежного построения. Ее элементы не заданы изначала как условие, они не определены однозначно, их подбор — лишь следствие того или иного движения в чертежах и будет таким на всех этапах развития мышления.
Эти два соображения приводят нас к выводу, что процесс решения рассматриваемой задачи ни в коем случае нельзя представлять как изолированные (или относительно изолированные) движения в одной из плоскостей. Они не являются также и двумя параллельными, совершающимися относительно независимо и лишь соответствующими друг другу движениями. Вернее всего, что это — единое движение, которое в равной мере определяется как своей задачей — перевести отношение одних величин в отношение других или, позднее, установить непрерывный ряд соотношений, так и возможностями движения в чертежах. Это единое движение содержит, по-видимому, непрерывные «переброски» с одной плоскости на другую. К примеру, после того, как на основе определенного движения в чертежах, найдено промежуточное соотношение, мы вновь возвращаемся к чертежам и ищем среди их элементов такое отношение, которое могло бы дать соотношение, связывающее данное отношение с новым в промежуточном соотношении. Таким образом поиск и движение в чертежах определяется задачей, которая фактически существует как задача получения определенного знания или определенного выражения. Таким образом, определенная характеристика продукта из верхней плоскости определяет характер познавательного движения в нижней плоскости, т.е. в плоскости объектов. Собственно это обстоятельство и обнаруживает прежде всего, что мы имеем дело с единым целостным движением, а не с двумя просто тесно связанными между собой.
Но чтобы проанализировать этот единый процесс, мы должны начать с анализа построений, т.е. движений в собственно объектах, определяя попутно, чем обусловливается каждый шаг в них. Мы должны построить весь этот процесс мышления «снизу», исходя сначала из действий с первыми, начальными объектами, затем учитывая первые их заместители и действия с ними, еще после — вторые заместители и т.д. Но это, в свою очередь,, упирается в решение вопросов, которые были поставлены в конце предшествующего параграфа: каковы познавательные действия с объектами разных слоев и в каких условиях при решении задач происходит переход от одного слоя заместителей к другому? Обсуждение этих вопросов — а систематически оно может быть проведено лишь в контексте восходящего исследования — должно стать темой ближайшей работы.
Достарыңызбен бөлісу: |