IL6
Интерлейкин-6 (ИЛ-6) является мультифункциональным цитокином, вовлеченным в воспаление, костный метаболизм, репродукцию, развитие нервной ткани и гематопоэз. Интерлейкин-6 продуцируется активированными моноцитами или макрофагами, эндотелиальными клетками, фибробластами, активированными T-клетками [61], а также рядом клеток, не являющихся иммуноцитами. Однако основное действие ИЛ-6 связано с его участием в качестве кофактора при дифференцировке В-лимфоцитов, их созревании и преобразовании в плазматические клетки, секретирующие иммуноглобулины. Помимо этого, ИЛ-6 способствует экспрессии рецептора ИЛ-2 на активированных иммуноцитах, а также индуцирует производство ИЛ-2 Т-клетками. Этот цитокин стимулирует пролиферацию Т-лимфоцитов и реакции гемопоэза [62].
В развитии ИБС и СД 2-го типа существенную роль играют воспалительные реакции. Повышение в плазме уровня интерлeйкина-6 (IL-6) и ФНО-α – ключевых медиаторов воспаления – связано с острым коронарным синдромом.
Полиморфизм: -174 G/C
Частота встречаемости обоих аллелей примерно одинаковая.
Показана ассоциация G-аллеля с высоким уровнем IL-6 в плазме [63] но низким интерлейкиновым ответом ex vivo в ответ на введение LPS [64]. Таким образом, имеется повышенный уровень готовности к развитию воспалительной реакции за счет повышенного базального уровня IL-6, но в случае развития воспаления дополнительный прирост уровня IL-6 низкий.
Клинические проявления
-
Инфаркт миокарда.
Установлено, что -174G>C полиморфизм при генотипе GG является независимым предиктором возникновения сердечно-сосудистой смерти после острого коронарного синдрома среди мужчин [65, 66].
-
Остеоартрит.
Наличие G-аллеля увеличивает риск остеоартрита [67]
-
Бронхиальная астма у детей
OR=3.2 при генотипе GG [68]
-
Синдром внезапной смерти внешне здорового ребенка при генотипе GG
F13A1
Коагуляционный фактор XIII (плазменная трансглутаминаза, фибриназа, фибринстабилизирующий фактор) участвует в образовании нерастворимого фибрина, представляющего собой основу кровяного сгустка [69]. В плазме находится в виде профермента, соединенного с фибриногеном. Будучи активирован посредством протеолиза с участием тромбина в присутствии кальция, фактор XIII (приобретает активность трансглутаминазы (фибринoлигазы), формируя ковалентные связи между специфическими остатками глутаминовой кислоты и лизина смежных мономеров фибрина, стабилизируя, таким образом, тромб. Вызывает превращение нестабильного фибринполимера в стабильный. Биологически активная форма состоит из глобул двух типов: альфа и бета.
Стабилизация фибринового сгустка заключается как в повышении его механической прочности [70], так и в защите от лизиса [71]
Для поддержания гемостатического равновесия при беременности важная роль принадлежит фибриновому слою. Плацентарно-децидуальная поверхность выстлана слоем фибрина, вырабатываемым организмом матери [72]. Существенную роль в стабилизации этого слоя играют фибронектин и фактор XIII [73].
Полиморфизм 103(163) G>T (Val34Leu)
Полиморфизм изменяет каталитическую активность фактора XIII [74]. Показано, что у гомозигот T/T снижается уровень XIII фактора в плазме [75]. В результате, при наличии варианта T(34Leu) наблюдается нарушение структуры и свойств фибриного сгустка [70, 74], что может быть причиной кровотечений [76], особенно при беременности [77] (в том числе из пупочной вены [78]), привычного невынашивания беременности, особенно у пациентов с эпизодами серьезных кровотечений в анамнезе [76, 79, 80]
Популяция
|
Частота встречаемости генотипа, %
|
GG
|
GT
|
TT
|
Европейская
|
57
|
40
|
3
|
Азиатская
|
98
|
2
|
-
|
Африканская
|
78
|
20
|
2
|
Клинические проявления
-
Уменьшение риска венозного тромбоза (OR=0.7-0.8) [81, 82].
-
Уменьшение риска инфаркта миокарда и инсульта [8]. В большей степени протективный эффект проявляется при высоком уровне фибриногена [83, 84].
-
Повышенный риск кровотечений, как правило, отсроченных [85, 86].
-
Субарахноидальные кровотечения у носителей T-аллеля [87]
-
Привычное невынашивание беременности [27, 88] даже в гетерозиготном состоянии [28, 83]
-
Данные о влиянии данного полиморфизма на риск венозной тромбоэмболии при ГЗТ и ОК практически отсутствуют. По-видимому, большее влияние на возникновение тромбоза в этой ситуации имеет снижение естественных антикоагулянтов и курение [89, 90].
Дополнительные исследования
-
Определение уровня XIII фактора свертывания крови
Практические рекомендации:
-
Для профилактики кровотечений хороший эффект дает применение криопреципитата плазмы, обогащенной фактором XIII [78].
-
Описаны случаи успешной беременности у женщины с наследственным дефицитом фактора XIII на фоне инфузии 300-450 мл плазмы каждые 14 дней или 500 единиц концентрата плацентарного фактора XIII каждые 21 день [88]
1. Walker, W.G., et al., Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects. Hypertension, 1979. 1(3): p. 287-91.
2. Sethi, A.A., et al., Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension, 2003. 41(6): p. 1202-11.
3. Winkelmann, B.R., et al., Angiotensinogen M235T polymorphism is associated with plasma angiotensinogen and cardiovascular disease. Am Heart J, 1999. 137(4 Pt 1): p. 698-705.
4. Sethi, A.A., et al., Angiotensinogen polymorphisms and elevated blood pressure in the general population: the Copenhagen City Heart Study. Hypertension, 2001. 37(3): p. 875-81.
5. Sethi, A.A., et al., Angiotensinogen mutations and risk for ischemic heart disease, myocardial infarction, and ischemic cerebrovascular disease. Six case-control studies from the Copenhagen City Heart Study. Ann Intern Med, 2001. 134(10): p. 941-54.
6. Pilbrow, A.P., et al., Angiotensinogen M235T and T174M gene polymorphisms in combination doubles the risk of mortality in heart failure. Hypertension, 2007. 49(2): p. 322-7.
7. Zafarmand, M.H., et al., The M235T variant of the angiotensinogen gene is related to development of self-reported hypertension during pregnancy: the Prospect-EPIC cohort study. Hypertens Res, 2008. 31(7): p. 1299-305.
8. Medica, I., A. Kastrin, and B. Peterlin, Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol, 2007. 131(2): p. 115-26.
9. Kamitani, A., et al., Enhanced predictability of myocardial infarction in Japanese by combined genotype analysis. Hypertension, 1995. 25(5): p. 950-3.
10. Vasku, A., et al., Angiotensin I-converting enzyme and angiotensinogen gene interaction and prediction of essential hypertension. Kidney Int, 1998. 53(6): p. 1479-82.
11. Anderson, T.J., Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol, 1999. 34(3): p. 631-8.
12. Harrison, D.G., Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest, 1997. 100(9): p. 2153-7.
13. Jeerooburkhan, N., et al., Genetic and environmental determinants of plasma nitrogen oxides and risk of ischemic heart disease. Hypertension, 2001. 38(5): p. 1054-61.
14. Pereira, T.V., et al., Three endothelial nitric oxide (NOS3) gene polymorphisms in hypertensive and normotensive individuals: meta-analysis of 53 studies reveals evidence of publication bias. J Hypertens, 2007. 25(9): p. 1763-74.
15. Trochu, J.N., [Should statins be part of the treatment of heart failure?]. Ann Cardiol Angeiol (Paris), 2004. 53(4): p. 209-16.
16. Yu, C.K., et al., Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and development of pre-eclampsia: a case-control study and a meta-analysis. BMC Pregnancy Childbirth, 2006. 6: p. 7.
17. Sandrim, V.C., et al., eNOS haplotypes associated with gestational hypertension or preeclampsia. Pharmacogenomics, 2008. 9(10): p. 1467-73.
18. Ameno, K., et al., Autopsy and postmortem examination case study on genetic risk factors for cardiac death: polymorphisms of endothelial nitric oxide synthase gene Glu298Asp variant and T-786C mutation, human paraoxonase 1 (PON1) gene and alpha2beta-adrenergic receptor gene. Vojnosanit Pregl, 2006. 63(4): p. 357-61; discussion 362-3.
19. van der Put, N.M., et al., Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet, 1995. 346(8982): p. 1070-1.
20. James, S.J., et al., Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr, 1999. 70(4): p. 495-501.
21. Mills, J.L., et al., Methylenetetrahydrofolate reductase thermolabile variant and oral clefts. Am J Med Genet, 1999. 86(1): p. 71-4.
22. Skibola, C.F., et al., Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12810-5.
23. Lucock, M., Is folic acid the ultimate functional food component for disease prevention? BMJ, 2004. 328(7433): p. 211-4.
24. Catania, J. and D.S. Fairweather, DNA methylation and cellular ageing. Mutat Res, 1991. 256(2-6): p. 283-93.
25. Vanyushin, B.F., et al., The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia, 1973. 19(3): p. 138-52.
26. Costello, J.F. and C. Plass, Methylation matters. J Med Genet, 2001. 38(5): p. 285-303.
27. Goodman, C.S., et al., Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol, 2006. 56(4): p. 230-6.
28. Yenicesu, G.I., et al., A prospective case-control study analyzes 12 thrombophilic gene mutations in Turkish couples with recurrent pregnancy loss. Am J Reprod Immunol, 2009. 63(2): p. 126-36.
29. Matok, I., et al., Exposure To Folic Acid Antagonists During The First Trimester of Pregnancy and the Risk of Major Malformations. British Journal of Clinical Pharmacology, 2009. Early View, Date: September 2009.
30. Boccia, S., et al., Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Lett, 2008.
31. Stidley, C.A., et al., Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res, 2010. 70(2): p. 568-74.
32. Barbosa, P.R., et al., Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur J Clin Nutr, 2008. 62(8): p. 1010-21.
33. Laraqui, A., et al., Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol, 2006. 61(1): p. 51-61.
34. Wilson, A., et al., A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab, 1999. 67(4): p. 317-23.
35. Zhu, H., et al., Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab, 2003. 78(3): p. 216-21.
36. Varga, E.A., B.A. Kerlin, and M.W. Wurster, Social and ethical controversies in thrombophilia testing and update on genetic risk factors for venous thromboembolism. Semin Thromb Hemost, 2008. 34(6): p. 549-61.
37. Haverkate, F. and M. Samama, Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost, 1995. 73(1): p. 151-61.
38. van 't Hooft, F.M., et al., Two common, functional polymorphisms in the promoter region of the beta-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler Thromb Vasc Biol, 1999. 19(12): p. 3063-70.
39. Humphries, S.E., J.A. Henry, and H.E. Montgomery, Gene-environment interaction in the determination of levels of haemostatic variables involved in thrombosis and fibrinolysis. Blood Coagul Fibrinolysis, 1999. 10 Suppl 1: p. S17-21.
40. Bots, M.L., et al., Level of fibrinogen and risk of fatal and non-fatal stroke. EUROSTROKE: a collaborative study among research centres in Europe. J Epidemiol Community Health, 2002. 56 Suppl 1: p. i14-8.
41. Sampaio, M.F., et al., AMI is associated with polymorphisms in the NOS3 and FGB but not in PAI-1 genes in young adults. Clin Chim Acta, 2007. 377(1-2): p. 154-62.
42. Scarabin, P.Y., et al., Genetic variation at the beta-fibrinogen locus in relation to plasma fibrinogen concentrations and risk of myocardial infarction. The ECTIM Study. Arterioscler Thromb, 1993. 13(6): p. 886-91.
43. Martiskainen, M., et al., Fibrinogen gene promoter -455 A allele as a risk factor for lacunar stroke. Stroke, 2003. 34(4): p. 886-91.
44. Martinelli, N., et al., Combined effect of hemostatic gene polymorphisms and the risk of myocardial infarction in patients with advanced coronary atherosclerosis. PLoS ONE, 2008. 3(2): p. e1523.
45. Panahloo, A., et al., Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes, 1995. 44(1): p. 37-42.
46. Simpson, A.J., et al., The effects of chronic smoking on the fibrinolytic potential of plasma and platelets. Br J Haematol, 1997. 97(1): p. 208-13.
47. Kruithof, E.K., Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb Haemost, 2008. 100(6): p. 969-75.
48. Ma, Z., D. Paek, and C.K. Oh, Plasminogen activator inhibitor-1 and asthma: role in the pathogenesis and molecular regulation. Clin Exp Allergy, 2009. 39(8): p. 1136-44.
49. Kohler, H.P. and P.J. Grant, Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med, 2000. 342(24): p. 1792-801.
50. Carmeliet, P., et al., Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation, 1997. 96(9): p. 3180-91.
51. Wiklund, P.G., et al., Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of stroke: replicated findings in two nested case-control studies based on independent cohorts. Stroke, 2005. 36(8): p. 1661-5.
52. Naran, N.H., N. Chetty, and N.J. Crowther, The influence of metabolic syndrome components on plasma PAI-1 concentrations is modified by the PAI-1 4G/5G genotype and ethnicity. Atherosclerosis, 2008. 196(1): p. 155-63.
53. Jeng, J.R., Association of PAI-1 gene promoter 4g/5g polymorphism with plasma PAI-1 activity in Chinese patients with and without hypertension. Am J Hypertens, 2003. 16(4): p. 290-6.
54. Balta, G., C. Altay, and A. Gurgey, PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol, 2002. 71(2): p. 89-93.
55. Pastinen, T., et al., Array-based multiplex analysis of candidate genes reveals two independent and additive genetic risk factors for myocardial infarction in the Finnish population. Hum Mol Genet, 1998. 7(9): p. 1453-62.
56. Vergouwen, M.D., et al., Plasminogen activator inhibitor-1 4G allele in the 4G/5G promoter polymorphism increases the occurrence of cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke, 2004. 35(6): p. 1280-3.
57. Yamada, N., et al., The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J Hum Genet, 2000. 45(3): p. 138-41.
58. Cho, S.H., C.H. Ryu, and C.K. Oh, Plasminogen activator inhibitor-1 in the pathogenesis of asthma. Exp Biol Med (Maywood), 2004. 229(2): p. 138-46.
59. Buckova, D., L. Izakovicova Holla, and J. Vacha, Polymorphism 4G/5G in the plasminogen activator inhibitor-1 (PAI-1) gene is associated with IgE-mediated allergic diseases and asthma in the Czech population. Allergy, 2002. 57(5): p. 446-8.
60. Kowal, K., et al., Analysis of -675 4G/5G SERPINE1 and C-159T CD14 polymorphisms in house dust mite-allergic asthma patients. J Investig Allergol Clin Immunol, 2008. 18(4): p. 284-92.
61. Kishimoto, T., The biology of interleukin-6. Blood, 1989. 74(1): p. 1-10.
62. Kita, M., et al., Induction of cytokines in human peripheral blood mononuclear cells by mycoplasmas. Microbiol Immunol, 1992. 36(5): p. 507-16.
63. Mysliwska, J., et al., The -174GG interleukin-6 genotype is protective from retinopathy and nephropathy in juvenile onset type 1 diabetes mellitus. Pediatr Res, 2009. 66(3): p. 341-5.
64. Tischendorf, J.J., et al., The interleukin-6 (IL6)-174 G/C promoter genotype is associated with the presence of septic shock and the ex vivo secretion of IL6. Int J Immunogenet, 2007. 34(6): p. 413-8.
65. Antonicelli, R., et al., The interleukin-6 -174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int J Cardiol, 2005. 103(3): p. 266-71.
66. Balding, J., et al., The IL-6 G-174C polymorphism may be associated with ischaemic stroke in patients without a history of hypertension. Ir J Med Sci, 2004. 173(4): p. 200-3.
67. Kamarainen, O.P., et al., Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis. Arthritis Res Ther, 2008. 10(1): p. R21.
68. Settin, A., et al., Gene polymorphisms of IL-6(-174) G/C and IL-1Ra VNTR in asthmatic children. Indian J Pediatr, 2008. 75(10): p. 1019-23.
69. Naski, M.C., L. Lorand, and J.A. Shafer, Characterization of the kinetic pathway for fibrin promotion of alpha-thrombin-catalyzed activation of plasma factor XIII. Biochemistry, 1991. 30(4): p. 934-41.
70. Lorand, L., Sol Sherry Lecture in Thrombosis : research on clot stabilization provides clues for improving thrombolytic therapies. Arterioscler Thromb Vasc Biol, 2000. 20(1): p. 2-9.
71. Sakata, Y. and N. Aoki, Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest, 1982. 69(3): p. 536-42.
72. Iwaki, T., et al., Fibrinogen stabilizes placental-maternal attachment during embryonic development in the mouse. Am J Pathol, 2002. 160(3): p. 1021-34.
73. Asahina, T., et al., Studies on the role of adhesive proteins in maintaining pregnancy. Horm Res, 1998. 50 Suppl 2: p. 37-45.
74. Ariens, R.A., et al., The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood, 2000. 96(3): p. 988-95.
75. Bereczky, Z., et al., Decreased factor XIII levels in factor XIII A subunit Leu34 homozygous patients with coronary artery disease. Thromb Res, 2008. 121(4): p. 469-76.
76. Hsieh, L. and D. Nugent, Factor XIII deficiency. Haemophilia, 2008. 14(6): p. 1190-200.
77. Koseki-Kuno, S., et al., Factor XIII A subunit-deficient mice developed severe uterine bleeding events and subsequent spontaneous miscarriages. Blood, 2003. 102(13): p. 4410-2.
78. Castaman, G., Prophylaxis of bleeding episodes and surgical interventions in patients with rare inherited coagulation disorders. Blood Transfus, 2008. 6 Suppl 2: p. s39-44.
79. Dargaud, Y., et al., An unusual clinical presentation of factor XIII deficiency and issues relating to the monitoring of factor XIII replacement therapy. Blood Coagul Fibrinolysis, 2008. 19(5): p. 447-52.
80. Inbal, A. and L. Muszbek, Coagulation factor deficiencies and pregnancy loss. Semin Thromb Hemost, 2003. 29(2): p. 171-4.
81. Renner, W., et al., Prothrombin G20210A, factor V Leiden, and factor XIII Val34Leu: common mutations of blood coagulation factors and deep vein thrombosis in Austria. Thromb Res, 2000. 99(1): p. 35-9.
82. Gohil, R., G. Peck, and P. Sharma, The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost, 2009. 102(2): p. 360-70.
83. Coulam, C.B., et al., Comparison of thrombophilic gene mutations among patients experiencing recurrent miscarriage and deep vein thrombosis. Am J Reprod Immunol, 2008. 60(5): p. 426-31.
84. de la Red, G., et al., Factor XIII-A subunit Val34Leu polymorphism is associated with the risk of thrombosis in patients with antiphospholipid antibodies and high fibrinogen levels. Thromb Haemost, 2009. 101(2): p. 312-6.
85. Mutch, N.J., et al., Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance to fibrinolysis. J Thromb Haemost, 2010.
86. Anwar, R. and K.J. Miloszewski, Factor XIII deficiency. Br J Haematol, 1999. 107(3): p. 468-84.
87. Ladenvall, C., et al., Association between factor XIII single nucleotide polymorphisms and aneurysmal subarachnoid hemorrhage. J Neurosurg, 2009. 110(3): p. 475-81.
88. Rodeghiero, F., et al., Successful pregnancy in a woman with congenital factor XIII deficiency treated with substitutive therapy. Report of a second case. Blut, 1987. 55(1): p. 45-8.
89. Cushman, M., The role of imflammation in Cardiovascular disease and effect of hormon replasment, in Материалы V международного симпозиума по проблемам здоровья женщин и менопаузе. 2004: Италия.
90. Макацария, А.Д., В.О. Бицадзе, and С.В. Акиньшина, Профилактика и лечение тромбоэмболических осложнений в акушерстве, in Тромбозы и тромбоэмболии в акушерско-гинекологической клинике. 2007, Медицинское информационное агенство: М. p. 1064.
Достарыңызбен бөлісу: |