Инструкция по защите городских подземных трубопроводов от коррозии рд 153-39. 4-091-01 Дата введения 2002-02-01


Протокол измерений плотности переменного тока при определении опасного влияния переменного тока



бет12/17
Дата24.02.2016
өлшемі1.71 Mb.
#13387
түріИнструкция
1   ...   9   10   11   12   13   14   15   16   17

Протокол измерений плотности переменного тока при определении опасного влияния переменного тока
Город _____________________________________________

Вид подземного сооружения и пункта измерения _____________________________________

Дата _________________________________

Время измерения: начало _____________________________, конец_____________________

Тип и номер прибора __________________________________________

Данные измерений мгновенной силы переменного тока, мА




t, мин/с

0

10

20

30

40

50

1



















2



















3



















4



















5



















6



















7



















8



















9



















10


















Камеральная обработка измерений




Число измерений

Сумма мгновенных значений силы переменного тока, J,мА

Среднее значение силы переменного тока, J, мА

Среднее значение плотности переменного тока, j, мА/см2

1

2

3

4

Оценка опасности коррозии под действием переменного тока

________________________________________________________________________________

(опасно, неопасно)

Измерил _____________________________ Проверил ________________________

Обработал __________________________________

Приложение Н

(Справочное)


Стационарные медносульфатные электроды длительного действия
Н.1 Стационарные медносульфатные электроды длительного действия типа ЭНЕС и ЭСН-МС (рис.H1) состоят из пластмассового корпуса 1, заполненного в заводских условиях электролитом 2, не замерзающим при температуре окружающей среды до минус 40° С, медного стержня 3, ионообменной мембраны 4 (одной или двух) с защитной сеткой 5, предохранительной трубки 6 с проводниками 7 от медного стержня 3 и наконечников 9. Электроды оснащены датчиком потенциала 8, представляющим собой пластину из Ст.3 размером 25х25 мм, вмонтированную в пластмассовое гнездо, закрепленное на корпусе электрода.

Рис.H1. Стационарный медносульфатный электрод сравнения типа ЭНЕС-1 и ЭСН-МС

1 - корпус; 2 - электролит; 3 - стержень из красной меди; 4 - ионообменная мембрана;

5 - защитная сетка; 6 - предохранительная трубка; 7 - проводники; 8 - датчик потенциала (ВЭ); 9 - наконечник.
Н.2 Основные параметры и размеры электродов ЭНЕС и ЭСН-МС следующие:


Переходное электрическое сопротивление электрода, кОм, в пределах

0,215

Потенциал по отношению к хлоридсеребряному электроду, мВ

120±30

Диаметр корпуса внутренний, мм, не более

83

Количество электролита в корпусе, см3

290300

Длина проводников, мм

20003000

Масса электрода полная, кг, не более

0,65

Н.3 Состав незамерзающего электролита для заполнения электродов ЭНЕС и ЭСН-МС.


Таблица


Документ

Наименование составной части, единица измерения

Значение

ГОСТ 6709-72

Вода дистиллированная, см3

200±3

ГОСТ 4165-78*

Сухой порошок сернокислой меди (хч или чда):







растворяемый в воде, г

65±1,5




добавляемый к раствору, г

30±1,5

ГОСТ 19710-83Е

Этиленгликоль первого или высшего сорта, см3

100,0±1,5

Приложение О

(Справочное)
ИНДИКАТОРЫ ОБЩЕЙ И ЛОКАЛЬНОЙ КОРРОЗИИ
О.1 Индикатор общей коррозии

О.1.1 Дополнительная оценка возможности общей коррозии при ЭХЗ может производиться с помощью блока пластин-индикаторов (БПИ).

О.1.2 Сущность метода заключается в том, что с помощью набора пластин-индикаторов, имеющих разные толщины, дополнительно оценивается общая коррозия и порядок ее средней скорости при ЭХЗ трубопровода в месте установки БПИ по времени от момента его установки до потери продольной электропроводимости пластин в результате коррозии.

О.1.3 БПИ (рис.О1) состоит из трех пластин, изготовленных из стали Ст.3 толщиной 0,3; 0,4; и 0,5 мм, рабочей длиной около 20 мм и шириной по 2 мм. Расстояние между пластинами 2 мм.



Рис.О1. Блок индикаторов (без корпуса)

1 - контрольная пластина; 2 - пластина-индикатор; 3 - контрольные проводники;

4 - указатель толщины пластины-индикатора.
Пластины-индикаторы 2 с помощью пайки или контактной сварки укреплены на контрольной пластине 1. К свободным концам пластин-индикаторов и контрольной пластине присоединены изолированные проводники 3. БПИ вмонтирован в пластмассовый корпус таким образом, что внутренние поверхности пластин изолированы от внешней среды.

О.1.4 БПИ может быть установлен непосредственно на поверхности трубопровода (рис.О2.), либо на корпусе стационарного медносульфатного электрода сравнения (рис.О3).



Рис.О2 Схема контроля электропроводимости индикаторов при установке блока индикаторов на поверхности трубопровода

1 - блок индикаторов; 2 - крепежный хомут; 3 - защитная трубка; 4 - клеммник;

5 - контрольные проводники от трубопровода, контрольной пластины блока индикаторов, пластин-индикаторов; 6 - омметр.

Рис.О3 Схема контроля электропроводимости индикаторов и измерения поляризационного потенциала трубопровода при установке блока индикаторов на стационарном электроде сравнения

1 - стационарный медносульфатный электрод сравнения; 2 - блок индикаторов (датчик потенциала) с толщиной пластин 0,3; 0,4; 0,5 мм; 3 - защитная трубка; 4 - клеммник в контрольно-измерительном пункте; 5 - прибор типа 43313.1; 6 - омметр; 7 - контрольные проводники от трубопровода, электрода сравнения, контрольной пластины, блока индикаторов, пластин-индикаторов; 8 - электроперемычка.


Примечание:

При использовании прибора типа ПКИ-02 проводник от трубопровода присоединяют к соответствующей клемме (зажиму) прибора


О.1.5 В обоих вариантах установки проводники от пластин БПИ, трубопровода и (во втором варианте установки) от электрода сравнения присоединяются к специальному клеммнику, располагаемому в горловине фальшколодца, в измерительной колонке, в металлическом корпусе на стене здания, в корпусе станции катодной защиты. Схема клеммника с присоединенными к нему контрольными проводниками приведена на рис.О2 и рис.О3. Электроперемычка между контрольными проводниками от трубопровода (клемма "Т") и от контрольных пластин размыкается лишь на период измерений потенциала трубопровода.

О.1.6 Методика измерений на месте установки БПИ сводится к определению электросопротивления в цепях "индикаторы-трубопровод" с помощью омметра (например, мультиметра типа 43313.1) и не зависит от способа установки БПИ (на поверхности трубопровода или на корпусе электрода сравнения).

О.1.7 Порядок измерений с помощью мультиметра 43313.1.

Подключают измерительные провода к клеммам "КП" и "0,3".

Устанавливают переключатель мультиметра в положение, соответствующее измерению сопротивления в диапазоне 0-200 Ом.

Подключают измерительные провода к гнездам мультиметра для измерений электросопротивления V/C и */ИЭ.

Включают мультиметр нажатием кнопки 1/о. При этом на ЦОУ (цифровом отсчетном устройстве) должна появиться индикация.

Значение сопротивления менее и более 10 Ом свидетельствует о том, что пластина толщиной 0,3 мм соответственно не разрушена и разрушена. Если пластина толщиной 0,3 мм разрушена, аналогичные измерения проводят на пластинах толщиной 0,4 и 0,5 мм. Если разрушена и пластина толщиной 0,4 мм, измерения продолжают на пластине толщиной 0,5 мм.

О.1.8 Измерения начинают в день установки БПИ.

На трубопроводах без ЭХЗ измерения проводят 1 раз в 6 месяцев до срабатывания первой пластины и далее с периодичностью 1 раз в 2 месяца.

Измерения проводят не реже 1 раза в 6 месяцев после включения ЭХЗ.

О.1.9 Оценку порядка величины скорости общей коррозии (K) после фиксации коррозионного разрушения пластины-индикатора производят по формуле:



K  365 · /, мм/год,

где:  - толщина пластины, мм;

 - число суток от момента установки блока индикаторов до первой фиксации разрушения индикатора, сут.

Примечание:

При срабатывании более одной пластины в расчет K принимается толщина  пластины, имеющей большую толщину.
О.1.10 При срабатывании всех пластин-индикаторов целесообразно произвести шурфование в пункте установки БПИ для обследования состояния поверхности трубопровода, выяснения причин коррозионных разрушений и разработки противокоррозионных мероприятий.
О.2 Индикатор локальной коррозии

О.2.1 Дополнительная оценка возможности локальной коррозии стального трубопровода при ЭХЗ может производиться с помощью индикатора локальной коррозии (ИЛК).

О.2.2 Сущность метода заключается в том, что одна из стенок полого стального корпуса ИЛК имеет заданную меньшую толщину, а в полость корпуса, заполненную сухим непроводящим капиллярно-пористым материалом, введен изолированный от корпуса металлический электрод. При сквозной коррозионной перфорации тонкой стенки корпуса внутрь него за счет капиллярного подсоса проникает грунтовая влага. В результате между корпусом и внутренним электродом образуется электролитический контакт, который может быть обнаружен по снижению электрического сопротивления между корпусом и внутренним электродом или по разности потенциалов между ними.

О.2.3 Схема одной из конструкций ИЛК представлена на рис.О4. Нижняя стенка ("дно") 1 стального корпуса 2 толщиной  является рабочей, площадь ее рабочей поверхности равна 6,15 см2. Полость 3 корпуса 2, заполненная тщательно промытым и высушенным речным песком, сверху перекрывается вставленной в корпус на плотной посадке эбонитовой заглушкой 4, через центр которой пропущен один из двух изолированных медных проводников 5 провода ПСВ-2. Нижняя часть проводника 5, освобожденная от изоляции, образует внутренний электрод 6. К внутренней поверхности верхней части корпуса над заглушкой в месте 7 припаян второй проводник 8 провода ПСВ-2. Пространство над заглушкой и внешние боковые стенки корпуса 2 залиты (в специальной форме) твердеющим герметиком типа "Полур", который исключает проникновение грунтовой влаги в полость 3 ИЛК иначе, чем через сквозную коррозионную перфорацию дна 1 корпуса 2.



Рис.О4. Схема одной из конструкций индикатора локальной коррозии (ИЛК)

1 - рабочая стенка корпуса; 2 - стальной корпус; 3 - полость корпуса, заполненная непроводящим капиллярно-пористым материалом; 4 - непроводящая заглушка;

5 - соединительный провод к внутреннему электроду 6; 7 - место припайки проводника 8 к корпусу 2; 9 - герметик
О.2.4 Для оценки локальной коррозии по п.2.1 у трубы одновременно устанавливается 2 идентичных ИЛК, 1 и 2, с одинаковой толщиной рабочей стенки  = 1,0 мм. Выводы от трубы и от обоих ИЛК выводятся на клеммник (рис.О5). Вывод от трубы подсоединяется к клемме Т, выводы от корпусов индикатора 1 и 2 - к клеммам соответственно К1 и К2, выводы от внутренних электродов индикаторов 1 и 2 - к клеммам соответственно В1 и В2. Клеммы Т и К1, К2 соединяются перемычкой П.

Рис.О5. Схема установки и подключения индикаторов локальной коррозии при контроле опасности локальной коррозии трубопровода, оборудованного средствами ЭХЗ

КЛ - клеммник; 1 - ИЛК-1; 2 - ИЛК-2; К1 и К2 - соединительные проводники от корпусов ИЛК с соответствующими номерами и клеммы для подключения данных проводников;

В1 и В2 - соединительные проводники от внутренних электродов ИЛК-1 и ИЛК-2 и клеммы

подключения данных проводников; Т - соединительный проводник от трубы и клемма

его подключения; П - перемычка.
О.2.5 Контроль локальной коррозии сводится к измерению сначала разности потенциалов U и затем сопротивления R между корпусом и внутренним электродом ИЛК. Для измерений может использоваться мультиметр (например, 43313.1) с верхним пределом измерения сопротивления не менее 20 МОм и с входным сопротивлением при измерении напряжения не менее 10 МОм. При использовании мультиметра 43313.1 измерения производятся при подключении корпуса ИЛК к разъему Ж/ИЭ, внутреннего электрода - к разъему V/C, причем R измеряется на шкале 20 М, а U на шкале "К" напряжения постоянного тока.

О.2.6 Признаком опасности локальной коррозии служит "срабатывание" проверяемых ИЛК - измерение хотя бы на одном из них конечных значений R < 10 МОм и (или) устойчивых отрицательных значений U, как правило, в пределах -20 мВ ...-2В.

О.2.7 При установлении возможной опасности локальной коррозии индикаторы отсоединяются от клеммников, извлекаются из грунта и рабочая поверхность каждого тщательно осматривается. При обнаружении на рабочей поверхности ИЛК хотя бы одной сквозной коррозионной язвы опасность локальной коррозии считается подтвержденной, и разрабатываются необходимые меры по защите от коррозии.

Приложение П

(Информационное)
Методика расчета совместной катодной защиты проектируемых газо- и водопроводов и катодной защиты проектируемой сети газопроводов
П.1 Основным расчетным параметром является средняя плотность защитного тока jср - отношение силы тока катодной станции J к суммарной наружной поверхности трубопроводов, защищаемых данной станцией.

П.2 Если проектируемые трубопроводы будут иметь соединения с действующими сооружениями, оборудованными установками ЭХЗ, необходимо расчетным путем проверить возможность защиты проектируемых трубопроводов действующими установками ЭХЗ.

П.3 Исходными данными для расчета катодной защиты проектируемых трубопроводов являются их параметры и среднее удельное сопротивление грунта на территории вдоль трасс проектируемых трубопроводов.

П.4 Площадь поверхности Sг2) всех газопроводов, которые электрически контактируют между собой за счет технологических соединений или специальных перемычек, определяют по формуле:



, (П.1)

где: diг - диаметр (мм);



Iiг - длина (м) участка газопровода, имеющего диаметр diг;

n - общее число соответствующих участков газопровода.

П.5 Площадь поверхности всех водопроводов Sв2), которые электрически контактируют между собой за счет технологических соединений или специальных перемычек, определяют по формуле:



, (П.2)

где: diв - диаметр (мм);



Iiв - длина (м) участка водопровода, имеющего диаметр diв;

m - общее число соответствующих участков водопровода.

Суммарная площадь поверхности S2) всех электрически связанных газопроводов и водопроводов равна:



S = Sг + Sв, (П.3)

П.6 Среднее удельное сопротивление грунта  (Ом·м) вдоль трасс проектируемых трубопроводов определяется по формуле:



, (П.4)

где: iг и iв - средние удельные сопротивления грунта (Ом·м) вдоль длины соответственно Iiг - каждого i-го участка газопровода и Iiв - каждого i-го участка водопровода;



Lг и Lв - суммарные длины газопроводов и водопроводов на данной территории.

П.7 Вычисляется доля (%) площади поверхности газопроводов аг и водопроводов ав в суммарной площади их поверхностей:



аг = (Sг/S) · 100 (П.5)

ав = (Sв/S) · 100 (П.6)

П.8 Вычисляется площадь поверхности (м2/га) газопроводов bг и водопроводов bв, приходящаяся на единицу площади территории Sтер (га), где размещены проектируемые трубопроводы:



bг = (Sг/Sтер) (П.7)

bв = (Sв/Sтер) (П.8)

П.9 Средняя плотность защитного тока для всех трубопроводов j (мА/м2) вычисляется по уравнению:



j = 30 – 10-3 (100 + 3,0 bв + 34bг + 5) (П.9)

П.10 При отсутствии водопроводов средняя защитная плотность тока газопроводов вычисляется по уравнению:



jг = 20 + 10-3 (100 - 34bг + 5) (П.10)

П.11 Если расчетное значение j или jг меньше 6 мА/м2, принимается j = 6 мА/м2.

П.12 Суммарная сила тока (А), необходимого для катодной защиты проектируемых газо- и водопроводов, определяется по формуле:

J = 1,3 · 10-3 jS, (П.11)

а для защиты только сети газопроводов - по формуле:



Jг = 1,3 · 10-3 jгSг, (П.12)

П.13 Число катодных станций определяют из условий оптимального размещения анодных заземлителей (наличие площадок, удобных для их размещения), наличия источников питания и т.д. При этом значение тока одной катодной станции можно ориентировочно принять равным 25 А. Поэтому число катодных станций приближенно равно n = J/25, где J = J или Jг.

П.14 После размещения катодных станций на совмещенном плане необходимо рассчитать зону действия каждой из них. Для этой цели определяют радиус действия Ri (м) каждой катодной станции

, П.13)

где: j - катодная плотность тока (А/м2), определенная по формуле (9) или (10),



K2/гa) - площадь поверхности всех трубопроводов на единицу площади поверхности территории:

K = S2) / Sтер (га) (П.14)

П.15 Если площади кругов, радиусы действия каждого из которых равны Ri, а центры находятся в точках размещения анодных заземлителей, не охватывают всей территории Sтер, необходимо изменить или места расположения катодных станций, или их токи и вновь выполнить проверку по п.П.14.

П.16 Тип преобразователя катодной станции выбирается так, чтобы допустимое напряжение было на 30% выше расчетного с учетом старения изоляционных покрытий и анодных заземлителей, а также возможного развития сети трубопроводов.



Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   17




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет