Исследование методов построения моделей кодер-декодер для распознавания русской речи


Марковников Н. М., Кипяткова И. C



бет18/23
Дата02.01.2022
өлшемі220.96 Kb.
#452242
түріИсследование
1   ...   15   16   17   18   19   20   21   22   23
issledovanie-metodov-postroeniya-modeley-koder-dekoder-dlya-raspoznavaniya-russkoy-rechi

Марковников Н. М., Кипяткова И. C. Аналитический обзор интегральных систем распознавания речи. Тр. СПИИРАН, 2018, № 58, с. 77–110. doi:10.15622/sp.58.4

  • Sutskever Vinyals O., Le Q. V. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.

  • Robinson T., Hochberg M., Renals S. The use of recurrent neural networks in continuous speech recognition. Automatic Speech and Speaker Recognition, Springer, 1996, pp. 233–258.

  • Chorowski J. K., Bahdanau D., Serdyuk D., Cho K., Bengio Y. Attention-based models for speech recognition. Advances in Neural Information Processing Systems, 2015, pp. 577–585.

  • Bahdanau D., Cho K., Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv, 2014. http://arxiv.org/abs/1409.0473 (дата обращения: 27.02.2019).

  • Ganchev T., Fakotakis N., Kokkinakis G. Comparative evaluation of various MFCC implementations on the speaker verification task. Proc. of the SPECOM, 2005, pp. 191–194.



  • Достарыңызбен бөлісу:
  • 1   ...   15   16   17   18   19   20   21   22   23




    ©dereksiz.org 2024
    әкімшілігінің қараңыз

        Басты бет