Контрольные вопросы по каждой из рассматриваемых тем занятий



бет20/26
Дата13.07.2016
өлшемі2.93 Mb.
#195993
түріКонтрольные вопросы
1   ...   16   17   18   19   20   21   22   23   ...   26

Контрольный пример 1


Андрей является торговым агентом компании VOLVO и занимается продажей последней модели этой марки автомобиля.

Годовой спрос оценивается в 4000 ед. Цена каждого автомобиля равна 90 млн. р., а годовые издержки хранения составляют 10% от цены самого автомобиля.

Андрей произвел анализ издержек заказа и понял, что средние издержки заказа составляют 25 млн. р. на заказ. Время выполнения заказа равно восьми дням. В течение этого времени ежедневный спрос на автомобили равен 20.

Необходимо в процессе решения данного примера ответить на следующие вопросы:

1. Чему равен оптимальный размер заказа?

2. Чему равна точка восстановления?

3. Каковы совокупные издержки?

4. Каково оптимальное количество заказов в год?

5. Каково оптимальное время между двумя заказами, если предположить, что количество рабочих дней в году равно 200?

Ниже приведено описание исходных данных и результаты решения контрольного примера с использованием условных обозначений:



Исходные данные:

величина спроса за год D=4000;

издержки заказа К = 25;

издержки хранения = 9/200;

цена за единицу с = 90;

время выполнения заказа L=8;

ежедневный спрос d= 20;

число рабочих дней Т = 200.



Решение:

оптимальный размер заказа Q* = 149;

точка восстановления R = 160 - 149 = 11;

число заказов за год N = 26,83;

совокупные издержки С = 1341;

стоимость продаж = 360000;

число дней между заказами t = 7,45.
Модель 3 оптимального размера заказа в предположении, что допускается дефицит продукта и связанная с ним упущенная прибыль (рис. 6.3).



Рис.6.3. Модель 3


Пусть р - упущенная прибыль в единицу времени, возникающая в результате дефицита одной единицы продукта; Р - упущенная прибыль за период, возникающая в результате дефицита одной единицы продукта.

Тогда:Q* = (2dK/h)1/2 x ((р+h)/р)1/2=(2DK/H)1/2 х ((Р+Н)/P)1/2 - оптимальный размер заказа; S* = (2dK/h)1/2 x (р/(h+р))1/2 =(2DK/H)1/2 x (P/(H+P))1/2 - максимальный размер запаса; R = Q*- S* - максимальный дефицит.



Модель.4 производства и распределения. В предыдущей модели мы допускали, что пополнение запаса происходит единовременно. Но в некоторых случаях, особенно в промышленном производстве, для комплектования партии товаров требуется значительное время и производство товаров для пополнения запасов происходит одновременно с удовлетворением спроса. Такой случай показан на рис.6.4.

Рис. 6.4. Модель 4


Спрос и производство являются частью цикла восстановления запасов. Пусть u - уровень производства в единицу времени, К - фиксированные издержки производства.

Тогда:


совокупные издержки хранения = (средний уровень запасов) х Н = Q/2[1-d/u] Н;

средний уровень запасов = (максимальный уровень запасов)/2;

максимальный уровень запасов = u t - d t = Q(l - d/u);

время выполнения заказа t = Q/u;

издержки заказа = (D/Q) К;

оптимальный размер заказа Q* = (2dK/h [(l-(d/u)])1/2 = (2DK/H[(l-(d/u)])1/2;

максимальный уровень запасов S* = Q*[(l-(d/u)].
Модель 5. Модель с количественными скидками. Для увеличения объема продаж компании часто предлагают количественные скидки своим покупателям.

Количественная скидка - сокращенная цена на товар в случае покупки большого количества этого товара. Ти­пичные примеры количественных скидок приведены в табл.8.1.

Таблица 6.1


Варианты скидок

1

2

3

Количество, при котором делается скидка

от 0 до 999

от 1000 до 1999

от 2000 и выше

Размер скидки, %

0

3

5

Цена со скидкой

5

4,8

4,75

Пусть I - доля издержек хранения в цене продукта с.

Тогда h = (I x c) и Q* = ( 2dK/(I x c))1/2 - оптимальный размер заказа.


Контрольный пример 2


Рассмотрим пример, объясняющий принцип принятия решения в условиях скидки. Магазин "Медвежонок" продает игрушечные гоночные машинки. Эта фирма имеет таблицу скидок на машинки в случае покупок их в определенном количестве (табл. 6.1). Издержки заказа составляют 49 тыс. р. Годовой спрос на машинки равен 5000. Годовые издержки хранения в отношении к цене составляют 20%, или 0,2. Необходимо найти размер заказа, минимизирующий общие издержки.

Решение

Рассчитаем оптимальный размер заказа для каждого вида скидок, т.е. Q1*, Q2* и Q3*. и получим Q1* = 700; Q2* = 714; Q3* = 718.

Так как Q1* - величина между 0 и 999, то ее можно оставить прежней. Q2* меньше количества, необходимого для получения скидки, следовательно, его значение необходимо принять равным 1000 единиц. Аналогично Q3* берем равным 2000 единиц. Получим Q1* = 700; Q2* = 1000; Q3* = 2000.

Далее необходимо рассчитать общие издержки для каждого размера заказа и вида скидок, а затем выбрать наименьшее значение.

Рассмотрим следующую таблицу:

Таблица 6.2



Вид скидки

1

1

3

Цена

5

4,8

4,75

Размер заказа

700

1000

2000

Цена на товар за год

25000

24000

23750

Годовые издержки заказа

350

245

122,5


Достарыңызбен бөлісу:
1   ...   16   17   18   19   20   21   22   23   ...   26




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет