Лекции по генетической минералогии


Тепловой беспорядок в кристалле. Тепловые дефекты



бет6/8
Дата15.06.2016
өлшемі0.5 Mb.
#137988
түріЛекции
1   2   3   4   5   6   7   8

Тепловой беспорядок в кристалле. Тепловые дефекты. Тепловое воздействие на кристалл может привести к тому, что вместо идеального упорядочения, при котором все узлы решетки заняты, а междоузлия пусты, часть узлов кристалла окажется пустой, а часть междоузлий занятой. Впервые гипотезу о возникновении такого рода нерегулярностей выдвинул наш известный физик Яков Ильич Френкель в 1926 г. Дефект по Френкелю в сущности состоит из двух дефектов - вакансии в узле решетки и частицы в междоузлии. При тепловом разупорядочении бинарного кристалла два вида таких дефектов : 1) в междоузлии смещен катион (дефект - френкель); 2) в междоузлие смещен анион (дефект - антифренкель). Другая модель теплового разупорядочения по Шоттки, когда элементарная частица покидает узел, оставляя вакансию и уходит на поверхность кристалла, где достраивает решетку (дефект - шоттки); менее вероятен обратный процесс - частица с поверхности внедряется в одно из междоузлий (дефект - антишоттки). При этом происходит увеличение размеров э.я. (параметров решетки) (Ковтуненко - рис.1.2, стр. 20). Третий тип тепловых дефектов: частицы занимают не "свои" узлы в решетке. В частности такой беспорядок наблюдается в бинарных интерметаллических соединениях. Этот вид дефектов именуется антиструктурным. В трехкомпонентных соединениях антиструктурные дефекты возникают при обмене местами двух катионов, принадлежащих к различным подрешеткам кристалла.

Концентрация тепловых дефектов является экспоненциальной функцией температуры. Резко возрастает концентрация дефектов вблизи Т плавления. Концентрация шоттковских тепловых дефектов в кубических кристаллах равна утроенной разности между относительным увеличением длины кристалла и относительным изменением параметра э.я. Обе эти величины доступны для измерений с такой точностью, которая позволяет проводить определения тепловых дефектов, когда их мольная доля достигает 0,00001.



Беспорядок, вызванный нарушениями стехиометрии. Дефекты нестехиометрии.

О н е и з б е ж н о с т и н а р у ш е н и я з а к о н о в с т е х и о м е т р и и в к р и с т а л л и ч е с к и х в е щ е с т в а х. Представления о возникновении тепловых дефектов в бинарном кристалле стехиометрического состава в значительной мере идеализированы и являются упрощенными. Они основаны на том, что появление дефектов в кристалле есть результат тепловых флуктуаций в решетке, когда отдельные частицы приобретают энергию, достаточную для ухода их из регулярных узлов. На языке термодинамики это означает, что процесс образования дефектов рассматривается как гомогенная внутрикристаллическая реакция, не связанная с наличием других фаз. В действительности эти другие фазы реально присутствуют. Этим вызван неизбежный обмен веществом между рассматриваемым кристаллом и этими фазами, т.е. окружающей средой. Наиболее простым и естественным является случай, когда кристалл находится в равновесии с собственным паром. В этом случае система состоит из двух фаз: твердое тело + газ. В случае бинарного (или более сложного состава) кристалла при этом неизбежно происходит нарушение стехиометрии, вследствие термодинамически неизбежного обмена веществом между фазами, а состав пара никогда не идентичен составу твердого тела.

Нестехиометрия (несовпадение реального состава с идеальным) - обьективно существующее свойство кристаллического вещества. Нестехиометрия в большей степени свойственна т.наз. немолекулярным кристаллам. В молекулярных кристаллах, образованных молекулами больших размеров, стехиометрия проявлена отчетливо. В молекулярных кристаллах, образованных молекулами малых размеров, тенденция к нестехиометрии невелика.

К нестехиометрическим соединениям относят особый класс сложных веществ, это т.наз. соединения включения (промежуточные между твердыми растворами внедрения и истинными химическими соединениями). Среди них немало молекулярных кристаллических соединений. При этом растворяющиеся молекулы ("гости") располагаются в пустотах (каналах, полостях, фонарях) кристалла-растворителя ("хозяина"): молекулы СО2, Н2О, N2 в кристаллах кордиерита; молекулы Н2О, СН4, Не в кристаллах берилла...Число молекул - гостей может меняться в широких пределах. Такие соединения именуются клатратами. В их числе интеркалат, в которых связанные между собой молекулы "гости" расположены между двумя соседними кристаллографическими плоскостями кристалла "хозяина"; они также нестехиометричны.

О б р а з о в а н и е д е ф е к т о в в к р и с т а л л е к а к р е з у л ь т а т

в з а и м о д е й с т в и я с н и м ч а с т и ц, и з б ы т о ч н ы х п р о т и в

с т е х и о м е т р и и.

Д е ф е к т ы н е с т е х и о м е т р и и. Сверх стехиометрические частицы попадают в кристалл обычно из газовой фазы (или из иного флюида) . В этих средах они нередко существуют в виде атомов. При попадании в кристалл под действием сил, удерживающих кристалл в определенном порядке, наиболее часто изменяется валентность внедряющихся частиц. Изменение степени окисления избыточной частицы означает обмен электронами между ней и кристаллом. Конечным результатом таких реакций всегда является образование дефектов,- это реакции образования дефектов. Для нестехиометричных кристаллов действуют принципы: 1) постоянства отношений количества разносортных узлов кристаллической решетки независимо от действительного состава вещества; 2) электро нейтральности кристалла с дефектами; 3) эквивалентности узлов разного сорта при нарушении стехиометрии (рис. 2.1 -- Ковтуненко, стр. 35).

Д е ф е к т ы н е с т е х и о м е т р и и в к р и с т а л л а х д в у к о м п о н е н т н ы х с о е д и н е н и й. Процессы дефектообразования сопровождаются возникновением в кристалле определенных электрофизи- ческих свойств. Под действием сил, удерживающих частицы кристалла, атомы компонента А, переходящие в кристалл из газовой фазы, меняют степень окисления, отдавая свои валентные электроны кристаллу. Для веществ с сильно выраженной ионной связью такой акт обычно заканчивается локализацией этих электронов на образованных при этом анионных вакансиях, поскольку они окружены положительным зарядом. В этом случае в соответствии с принципом электронейтральности все структурные элементы решетки будут иметь 0 эффективный заряд. Но связь таких электронов с решеткой будет гораздо менее прочной по сравнению с теми электронами, которые локализованы на анионных вакансиях. Поэтому эти электроны называют квазисвободными (рис. 2.2 - Ковтуненко, стр. 42). Такого рода образования придают кристаллам окраску. В кристаллах галита дефицит аниона вызывает синее окрашивание, в кристаллах сильвина - желтое и т.п. (образцы). Поэтому их нередко называют центрами окраски или F-центрами (Farbenzentrum).

В случае, когда тот же ионный кристалл АВ экспонируется в парах компонента В, частицы В достраивают анионную подрешетку и приобретают - заряд. Поставщиком электронов для этой цели являются валентная зона и покидая ее электроны оставляют после себя положительно заряженные дырки.

Квазисвободные электроны и дырки представляют собой дефекты кристаллов. Концентрация этих дефектов в кристаллах по экспоненте зависит от давления пара компонентов; например, для галенита это четвертая степень давления паров серы.

Д е ф е к т ы н е с т е х и о м е т р и и в к р и с т а л л а х т р ё х к о м п о н е н т н ы х с о е д и н е н и й. Это кристаллы обычно двух типов : а) кристаллы, в которых каждый из трёх компонентов образует собственную подрешетку- две катионные и одну анионную; б) кристаллы с двумя подрешетками- катионной и анионной, третий компонент распределен статистически в узлах либо катионой, либо анионной подрешетки. Наиболее важен тип а). Рассмотрим оксиды со структурами перовскита МеTiO3, шпинели Ме2+Ме3+2О4, силленита SiBi12O20.

Две причины возникновения нестехиометрии.

Первая причина - удаление из кристаллов или обогащение одним из компонентов - либо анионом (кислородом...), либо катионом. Например, PbTiO3  0.5  O2 + PbTiO3- (-нестехиометрия - избыток или дефицит кислорода); концентрация дефектов нестехиометрии - функция давления О2. При этом возникают точечные дефекты.

Особый интерес представляет нестехиометрия в соединениях типа структур внедрения, когда внедряющийся и основной катионы сильно отличаются величиной электроотрицательности и основной катион - d-элемент. Такая ситуация свойственна оксидным бронзам. В этом случае внедрение в кристалл более электроположительного металла сопровождается изменением валентности переходного металла, причем количества внедренного катиона и катиона переходного металла, изменившего валентность, эквивалентны: хNa + WO3 Na1+хW5+хW6+1-хO3 (такого типа оксидные вольфрамовые бронзы имеют существенное значение как формы переноса вольфрама гидротермами).

Вторая причина - удаление или обогащение кристалла сразу двумя компонентами, один из которых анион, а другой- катион. Такой процесс приводит к тому, что в упомянутых соединениях соотношения между оксидами очень часто выходит из подчинения правилам стехиометрии. Так, обычно состав силленита не SiO2*6 Bi2O3 = Bi12SiO20, а несколько смещен в ту или иную сторону.

-нестехиометрия - разбаланс в соотношении между катионными составляющими: PbTiO3 PbO + Pb1-TiO3-. При этом при значительном нарушении стехиометрии нередко возникают существенные кристаллографические нарушения, возникают протяженные дефекты.

Рассмотрим процессы дефектообразования в шпинелях АВ2О4 с весьма устойчивой ГЦК решеткой, в узлах которой О2-. Внутри решетки два вида пустот - октаэдрические и тетраэдрические, которые могут быть заняты катионами А (Mg,Fe2+,Zn,Ni..) и В (Fe3+,Al,Cr..). Когда А в тетраэдрах, а В в октаэдрах - это нормальные шпинели; когда В в тетраэдрах, а в октаэдрах А и В поровну - это обращенные шпинели. Э.я. шпинелей содержит 8 ф.е. В идеальном кристалле шпинелей на 1 э.я.- 32 кислородных узла, 64 тетраэдрических и 32 октаэдрических. Кислородные узлы заняты полностью, тетраэдрические на 1/8, октаэдрические на 1/2. При нарушениях стехиометрии эти соотношения между занятыми и пустыми узлами не сохраняются. Шпинелям свойственны оба вида нарушения стехиометрии s и . Особо интересна -нестехиометрия, обычно развивающаяся при высоких Т. Так, при термическом воздействии на ганит ZnAl2O4 часть ZnO покидает кристаллы и кристаллы обогащаются Al2O3. При 16000 С равновесный состав Zn0,55Al2,30O4 или же 0,55 ZnO x 1,15 Al2O3, т.е. колоссальный дефицит Zn при небольшом избытке Аl, а сумма количества О не изменилась! Структура сохранилась! Избыточный Al размещен не в "своих" октаэдрических позициях, а тетраэдрических, освободившихся после ухода части Zn; в этих "чужих" местах атомы Al удерживаются весьма прочно, т. к. их заряд выше, чем у Zn. Итак, анионные вакансии не возникли, появились лишь вакансии в катионных узлах.

Аналогичная ситуация с шпинелью MgAl2O4, состав которой при весьма высоких Т - Mg0,16Al2,56O4 или 0,16 MgO x 1,28 Al2O3.

Реальные эффекты нестехиометрии.

Нестехиометричные кристаллы представляют собой гомогенные фазы переменного состава. Состав кристаллов - функция ряда термодинамических параметров - T и P прежде всего. "Общение" кристалла с окружающей средой неотвратимо приводит к самопроизвольному нарушению стехиометрии. Пока избыточный компонент не образует новые фазы, нестехиометричный кристалл можно рассматривать как твердый раствор этих компонентов в основном веществе. Он представляет собой область гомогенности, границы которой определяются пределами растворимости указанных компонентов. Реально области гомогенности обычно весьма узкие. Так, область гомогенности PbO c избытком Pb - при 8500 = 0, при 11500 С достигает 10-4 %; PbO с избытком О - при 5000 = 0, при 8200 достигает 3х10-3 %. Ковтуненко, стр. 79 - рис. 3.2. Эти то фазы с ничтожно узким интервалом гомогенности (не различимые ! на обычных диаграммах состояния систем) и определяют электрофизические свойства кристалла и зачастую являются главным фактором, определяющим кинетику фазовых превращений и различных химических реакций. Для примера рассмотрим P-T-X диаграмму оксидов Pb- Ковтуненко, рис.3.10- стр.104. При разнице нестехиометрии на 0,000n % - равновесная f O2 меняется на n порядков! Но! при столь ничтожных вариациях состава разница Т фазовых переходов и границ полей устойчивости фаз нередко превышает 3000 С. При этом очень существенно меняются электрофизические свойства : проводимость, магнитная восприимчивость, свойства поверхности...



Беспорядок в кристалле, обусловленный посторонними примесями

Факторы влияния собственных примесей на растворимость посторонних и наоборот. Факторы влияния одних посторонних примесей на растворимость других постронних примесей. Как и при собственном беспорядке, внедряющиеся атомы могут сохранить нулевую валентность или же валентность их изменится, они превратятся в ионы.

Н е и з б е ж н о с т ь з а г р я з н е н и я к р и с т а л л а п о с т о р о н н и м и п р и м е с я м и. Энергия смешения всегда отрицательна, т.е. процесс образования твердого раствора термодинамически выгоден и, следовательно, загрязнение неизбежно. Два случая внедрения посторонних примесей с образованием твердых растворов: 1) атомы внедряющейся примеси занимают регулярные узлы решетки - твердые растворы замещения; 2) атомы (частицы) внедряющейся примеси в междоузлиях- твердые растворы внедрения. Возникновению твердых растворов замещения благоприятствуют близость радиусов атомов основного и замещающего и близость их химической природы; общие типы решеток, в которых кристаллизуются атомы-примеси и основного вещества. Возникновению твердых растворов замещения благоприятствуют размеры междоузлий, равные или превышающие размеры внедряющихся атомов (частиц).

Твердые растворы изовалентные и гетеровалентные. Если стехиометрия нарушена в сторону избытка металла, валентность примеси должна быть меньше валентности основного компонента. При избытке металлоида, валентность примеси должна быть больше валентности основного компонента. Если атомы-примеси расположены в междоузлиях, образуя растворы внедрения, то атомы-примеси, внедрившиеся в кристалл интерстициально, являются донорами, если их внешняя оболочка заполнена меньше, чем на половину, и акцепторами, если их внешняя оболочка заполнена более чем на половину.



Отжиг и закалка дефектов

Для описания равновесия дефектов в кристалле пользуются обычными приемами равновесной термодинамики, привлекая три параметра - концентрацию, Р и Т. Избыточное число дефектов неустойчиво, происходят процессы диффузии точечных дефектов к поверхности кристалла, к трещинам, включениям, возможна коагуляция, слипание точечных дефектов или аннигиляция разно заряженных дефектов. Процессы движения точечных дефектов ускоряются с ростом Т.

Возникают точечные дефекты при росте кристаллов, при пластических деформациях, при облучении частицами с большими энергиями. Большое число точечных дефектов образуется при Т близкой к Т плавления. При резком снижении Т = при закалке основная доля таких дефектов сохраняется и чем глубже охлаждение, тем медленнее идет установление равновесной при данной Т концентрации точечных дефектов. Вот почему кристаллы хранят"память"о перегреве расплава...

Выявляются точечные дефекты оптическими, магнитными, спектральными, ядерно-физическими методами (эффект Мессбауэра...), травлением.



Взаимодествие дефектов в кристаллах.

Мы кратко рассмотрели возникновение в кристалле элементарных точечных дефектов - квазисвободных электронов и дырок, вакансий сверх стехиометричных или внедренных в кристалл примесных атомов, полагая что вакансии и междоузельные атомы распределены в объеме кристалла статистически равномерно и не взаимодействуя друг с другом. Однако это не совсем так. Такие явления как фотопроводимость, люминесценция связаны с более сложными образованиями. Это ассоциаты точечных дефектов или частиц либо сверхструктуры, когда взаимодействующие между собой точечные дефекты в конечном итоге располагаются в кристалле по определенному закону, как бы образуя новую (собственную) подрешетку - сверхструктуру. Ассоциаты - кластеры, пучки, грозди, группы дефектов (Гегузин, стр.104, 106, 108). Ассоциаты как провозвестники распада нестехиометрических фаз и выделения избыточного компонента в самостоятельную фазу. Некоторые исследователи уподобляют крупные ассоциаты коллоидным частицам - мицеллам, стабильность которых связана с поверхностной энергией Гиббса. Ассоциаты сравнительно мало подвижные дефекты, они могут стать препятствием на пути распада твердых растворов.



Образование сверхструктуры обычно есть результат взаимодействия между однотипными заряженными дефектами, когда они вынуждены занять в кристалле наиболее энергетически выгодные позиции и тем самым как бы оказаться в энергетических ямах. Это должно сопровождаться выделением энергии, что превращает формирование сверхструктур в энергетически выгодный процесс. Итак, образование сверхструктур представляет собой такую перестройку в кристалле, которая охватывает весь кристалл, частично меняет первоначальную структуру и вместе с тем приводит к появлению в нем элементарных дефектов нового типа. Следовательно, увеличение концентрации дефектов, сопровождающееся ростом беспорядка, привело к их упорядочению, что в свою очередь принесло новый беспорядок. Итак, превращения беспорядок порядок  беспорядок. Это наблюдается на нестехиометрических оксидах U и Th.

Протяжённые дефекты. До сих пор рассматривались дефекты размером примерно с э.я. - условно точечные, нульмерные. Характерная особенность реальных кристаллов - наличие таких нарушений периодичности решетки, которые сравнимы с размерами кристалла. Это протяженные дефекты - линейные, поверхностные и объёмные.

Одномерные линейные дефекты - дислокации - линии, вдоль или вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей. Еще раз фото- оливин! Дислокации краевые и винтовые. Краевая - дефект, на котором обрывается сетка или группа сеток в кристалле. Винтовая - дефект, вдоль оси которого все атомы или ионы как бы расположены по винтообразной поверхности, плоские сетки в области винтовой дислокации закручиваются вокруг ее оси. И краевые, и винтовые дислокации раз возникнув, не могут заканчиваться в объёме кристалла,- они выходят на его поверхность или замыкаются вокруг кристалла. Замыкаясь в кристалле, дислокации образуют петли. Направления дислокаций обычно находятся в плоскостях с малыми индексами. Так, для слюд главные направления осей дислокаций [010] и [110] (параллельно лучам фигуры удара) и [100] и [130] (параллельно лучам фигуры давления). Вдоль оси дислокации могут присутствовать полые каналы, заполненные примесями. В ряде случаев частицы примеси декорируют дислокации. Классическим примером естественного декорирования дислокационной структуры слюды мелкими газовыми включениями CO2 является ковдорский флогопит. Узоры на плоскостях спайности флогопита обусловлены скоплениями газовых пузырьков вдоль осей винтовых дислокаций (точечные сгустки) и краевых дислокаций (линейные скопления включений - лучи). По направлению этих лучей можно определять направления преимущественного роста кристаллов ! Радиационные дефекты возникают под действием электронного, нейтронного или -излучения. Треки - представляют скопления точечных дефектов (дефекты по Френкелю) вдоль траектории осколков ядер радиоактивных элементов,- ионы просто сметены со своих мест. Длина треков обычно n - n 10 микрон, поперечник области возмущения = аморфизации вещества около 1 мкм. По числу треков судят о концентрации радиоактивных элементов в минералах, вулканических стеклах. Определив концентрацию U, Th, K и число треков, можно подсчитать возраст данного минерала, точнее возраст "закрытия" радиоактивной системы данного минерала ниже какой-то Т (которая индивидуальна для каждого минерала). Эти данные позволяют оценивать реальные скорости охлаждения- воздымания горно-складчатых и иных областей по результатам изучения треков деления в серии минералов - слюды, амфиболы, циркон, апатит, сфен...

Двумерные дефекты. К ним относятся поверхности контакта кристаллов с газами и жидкостями, границы между сросшимися кристаллами одного и того же или разных минералов, двойниковые плоскости, границы слабо разориентированных блоков одного кристалла, а также дефекты упаковки, сетки дислокаций. Вдоль двумерного дефекта взаимное расположение строительных единиц кристалла искажено по сравнению с объемным расположением частиц. Деформированность частиц, связанная с неполной компенсацией их зарядов, ведёт к повышенной химической активности этих частиц, что позволяет травлением относительно легко выявлять двумерные дефекты, выходящие на поверхность кристалла. Нередко они могут быть обнаружены и под оптическим микроскопом.

Дефекты упаковки. Поверхность, вдоль которой нарушена нормальная последовательность атомных слоев, - дефект упаковки. Простейший пример дефекта упаковки - нарушение последовательности слоев (вновь - фото структуры бабингтонита). Например, в кубической решетке (abcabc) с местным образованием гексагональной упаковки (abab): abcabc/abab/abcabc. Это - дефект упаковки внедрения. Возможно и отсутствие одного или нескольких слоев в закономерной их последовательности - дефекты упаковки вычитания. К дефектам упаковки относятся также антифазные границы в упорядоченных сплавах, т.е. такие границы, при переходе через которые резко изменяется порядок в расположении атомов. В результате структура кристалла представляет последовательность доменов с различным типом структуры - рис. 1.25 - AuCu -II -Петров+Краснова, стр. 22.

Обмен частицами разного сорта в бинарных или поликомпонентных соединениях приводит к образованию дефектов антиструктурных = антифазных; такие дефекты характерны для интерметаллических соединений - в AuCu - рис. 1.24 - 1.26 - Петров+Краснова, стр. 22-23. Электронно- микроскопические снимки антифазных доменов в гемоильмените, анортите.



Трёхмерные дефекты. К трёхмерным дефектам относят участки кристалла или сильно разориентированные относительно остальной его части или заполненные посторонним веществом - лакуны.
Псевдоморфозы
Содержание термина отражает противоречие между формой и содержанием минерального тела. Форма первичного минерала (протоминерала) заполняется иным содержанием – новообразованиями иного минерала или нескольких минералов. Иногда бытует термин отрицательная псевдоморфоза для полых образований. Псевдоморфозы – продукты химического и физическоского изменения индивидов протоминералов, а также агрегатов протоминералов и фоссилизации органических остатков с сохранением их формы и размера. Изучение псевдоморфоз зачастую лежит в основе исследования процессов рудогенеза – таких как процессы образования метасоматитов. Именно псевдоморфный характер этих процессов обусловил то, что эти процессы происходят при постоянном объёме (правило или закон Вальтера Линдгрена). Грандиозный масштаб явлений псевдоморфизации. Форма значительно более устойчива, чем содержание.

Псевдоморфозы превращения = параморфозы. Истинные псевдоморфозы мономинеральные, полиминеральные, аггрегативные, полые (контурные), частичные и полные…




ОНТОГЕНИЯ МИНЕРАЛОВ
АГРЕГАТЫ
В природе отдельные кристаллы встречаются редко. Более распростра-нены их различные срастания - агрегаты. Минеральный агрегат есть сово-купность соприкасающихся минеральных индивидов, жёстко закреплённых друг относительно друга в пространстве. Простые минеральные агрегаты состоят из синхронно выросших индивидов. Сложные минеральные агрегаты - из синхронно и последовательно выросших агрегатов. Структура минерального агрегата = его строение определяются формой, размерами и взаимными отношениями слагающих его индивидов. Текстура минерального агрегата (термин имеет двойную смысловую нагрузку) - в минералогии, кристаллохимиии и материаловедении - направление кристаллографической ориентировки слагающих его индивидов; в петрографии и учении о полезных ископаемых - иное, известное Вам.

Монокристальный индивид ( в том числе кристалл с дислокациями и скелетный кристалл) представляют собой кристаллическое пространство, которое можно "обойти", оперируя законами пространственной решётки. Из одного индивида в другой нельзя перейти по соображениям симметрии, но и потому, что индивиды ограничены поверхностью раздела - дислокационной границей или другим нарушением непрерывности. Расщепляющийся в сферолит кристалл является до тех пор "индивидом" = сферокристаллом, пока все слагающие его лучи связаны непрерывно в одно целое, позволяя обойти (хотя и с повторением хода) весь индивид. Как только в результате расщепления отдельные участки кристалла полностью отграничатся пространственно от остальных частей, он превращается в агрегат - сферолит. В качестве критерия для выделения минерального агрегата принимается пространственная обособленность и структурно-текстурное равенство слагающих агрегат индивидов. Связь индивид - агрегат относительная, они относятся один к другому как часть к целому. Любой агрегат состоит из индивидов минералов и, в тоже время, является составной частью агрегата более высокого порядка, выступая в нём как индивид. Агрегаты - это надкристаллические формы организации вещества атомов молекул.

Форма минеральных агрегатов в значительной степени зависит от размера индивидов. Минеральные агрегаты зернистые - крупно-, средне-, мелкозернистые и плотные = тонкозернистые. Минеральные агрегат параллельно-шестоватые, лучистые, радиально-лучистые, листоватые, концентрические, сферолитовые. Скопления сферолитов или оолитов МА - оолитовые, пизолитовые, сферолитовые агрегаты. В трещинах горных пород и на их поверхности часто развиты древовидные - дендритовые поликристал-лические МА. В открытых полостях - сталактитовые, гроздевидные, почковидные МА.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет