Лекции по генетической минералогии


Рост минеральных агрегатов



бет7/8
Дата15.06.2016
өлшемі0.5 Mb.
#137988
түріЛекции
1   2   3   4   5   6   7   8

Рост минеральных агрегатов

Минеральные агрегаты, как и индивиды минералов, проходят стадии зарождения, роста и изменения.



Ортотропизм = рост кристаллов преимущественно в направлении, перпендикулярном к плоскости или линии его зарождения. Причина ортотропизма чисто геометрическая: кристаллы растут произвольно в стороны только до тех пор, пока не приходят в соприкосновение друг с другом. В дальнейшем в ходе геометрического отбора выживают те их них, для которых направление максимальной скорости роста расположено перпендикулярно к субстрату. В конечном итоге после отбора остаются индивиды, образующие параллельно-шестоватые агрегаты, рост которых может продолжаться бесконечно. Стадии роста - отдельными кристаллами, друзовая, параллельно-шестоватые агрегаты. Процесс образования друз - не завершённый процесс заполнения пространства кристаллами. Рост может остановиться на любой стадии.

При росте на неровной поверхности субстрата тенденция к геомет-рическому отбору увеличивается как за счёт отсутствия преимущественной ориентировки зародышей, так и за счёт неодинакового их расположения в пространстве, благодаря чему более высоко расположенные зародыши оказываются в более выгодном положении.

Образованные таким образом параллельно-шестоватые агрегаты 1 типа по Д.П. Григорьеву - агрегаты возникшие в условиях относительно свободного роста на подложке - субстрате (в расплавах, в растворах) в полостях, когда скорость роста минерального агрегата меньше скорости раскрытия этой полости. Способ питания растущих кристаллов со стороны их головок. Рост обычно симметричный по обеим сторонам жильной трещины.

Итак, признаки параллельно-шестоватых агрегатов 1 типа: в основании зона геометрического отбора; одинаковая ориентировка кристаллов в парал-лельно-шестоватой зоне, то есть в направлении наибольшей скорости роста; эта зона покрыта выставляющимися из агрегата головками кристаллов - у кварца это вершины ромбоэдров.



Выявление зон геометрического отбора важно, поскольку становится ясен механизм роста данного минерального агрегата (кристаллизация в открытом пространстве) и направление роста минерального агрегата, то есть последовательность кристаллизации.

Обычно рост происходит при пассивном взаимодействии с подложкой - субстратом. Рост друз при активном взаимодействии с кристаллическим субстратом хорошо изучен на примере кварца, выросшего на подложке халцедона. Мы его уже рассматривали - первый "слой" кристаллов кварца лежит на сферолитах халцедона. При дальнейшем росте с учётом геометрического отбора = борьбы за пространство вырастают кристаллы кварца из зазоров, щелей между сферолитами. Далее стандартная картина. Ещё пример - ориентированное нарастание кварца на кристаллы щелочного полевого шпата.

Иной тип - параллельно-шестоватые агрегаты 2 типа по Д.П. Григорьеву. Это агрегаты без закономерной кристаллографической ориентировки шестиков кристаллов относительно их удлинения. Они образуются в условиях стеснённой кристаллизации без явлений геометрического отбора. Здесь скорость приоткрывания трещин меньше скорости роста кристаллов по любому кристаллографическому направлению. Приоткрывание возникшей трещины происходит постепенно мелкими толчками с амплитудой в десятые - сотые доли мм, что фиксируется иногда слоями включений в кристаллах. По этой причине каждый кристалл, не зависимо от его ориентировки, успевает подрасти любым своим кристаллографическим направлением вслед за отодвигающейся стенкой трещины. Нет геометрического отбора, нет и головок кристаллов. Необходимые условия медленного раздвигания стенок трещины чаще создаются не вследствие тектонических подвижек, а как результат кристаллизационного давления растущих кристаллов. Следовательно, питание растущих кристаллов происходит за счёт растворов по порам и микротрещинам.

В процессе заполнения жильных трещин параллельно-шестоватые агрегаты 2 типа обычно отвечают ранней стадии. Нередко агрегаты 1 и 2 типа чередуются в объёме жил.

Сколь угодно широко развиты также агрегаты массивные, то есть без предпочтительной, в том числе без параллельной, ориентировки индивидов, В таких агрегатах естественно отсутствуют явления геометрического отбора.

Достаточно широко распространены агрегаты нитевидных кристаллов. Нитевидные кристаллы часто вырастают на пористом основании, которое и является источником питания (отверстия микропор). Кристаллы растут основанием. На ровном пористом основании образуются параллельно-волокнистые агрегаты, в которых все волокна перпендикулярны поверхности породы - подложки. Встречаются следующие типы агрегатов нитевидных кристаллов : агрегаты прямых нитевидных кристаллов одинаковой длины - корки постоянной толщины или цилиндры; агрегаты прямых нитевидных кристаллов различной длины - бугры, обособленные конусы среди сплошных корок; агрегаты расщеплённых нитевидных кристаллов, расщеплённых в центре - где скорость роста больше - пучки нитевидных кристаллов изгибаются от центра к периферии во все стороны, формируя антолиты (или антодиты); расщеплённые агрегаты нитевидных кристаллов вдоль определённой плоскости, в обе стороны от которой происходит загибание пучков нитей, причём в одних случаях длина нитей постоянна, в других длина нитей постепенно меняется, - агрегат изгибается в сторону, растущую с минимальной скоростью; расщеплённый агрегат изогнут в одном направлении, волокна, хотя и изогнуты, лежат в одной плоскости, в пределе форма агрегата - дуга, спираль, кольцо.



Первичные поверхности роста кристаллов
Их всего три типа.

Идиоморфная поверхность - собственная поверхность роста кристаллов - полногранная, скелетная, антискелетная, многоглавая регенерационная и другие. Однозначно определяется при рассматривании ростовых скульптур индивида, при объёмных наблюдениях.

Ксеноморфная поверхность - поверхность отпечатывания чужой формы. Индукционная поверхность (термин А.Е. Ферсмана), иначе компромиссная поверхность совместного роста, возникающая в процессе борьбы за пространство растущих, то есть увеличивающихся в объёме индивидов. Если два или более минеральных тела = индивида (сферолита…) совместно и одновременно увеличиваются в объёме, то в месте их соприкосновения возникают индукционные поверхности, форма которых определяется соотношением скоростей передвижения поверхностей рассматриваемых минеральных индивидов в различных направлениях. На образование тпких поверхностей не оказывает влияние «кристаллизационная сила» или «кристаллизационная способность» минералов. Нет «наведения», «особого влияния» одного кристалла на другой. Индукционные поверхности совместного одновременного роста имеют одинаковые морфологические проявления как при росте минеральных агрегатов в открытых полостях, так и при метасоматическом росте – в метасоматитах и в метаморфитах.

Индукционные поверхности – это ступенчатые блестящие поверхности, покрытые характерной штриховкой, образуемой ритмическим перемещением ребра между двумя возможными в месте соприкосновения гранями того и другого индивида. Индукционная поверхность между индивидами аналогична поверхности, разделяющей пирамиды нарастания разных граней в самом кристалле, т.е. с поверхностью, образованной ребром между двумя гранями при росте кристалла. Элементы строения индукционной поверхности – псевдограни (индукционные грани - плоские. округлые, более сложные), псевдорёбра (индукционные рёбра). Эти грани – псевдограни как правило блестящие узкие полоски или неправильные треугольники и т.п. Для большинства изученных образцов поверхности псевдограней принадлежат к рациональным и часто достаточно важным в структурном отношении зонам кристалла. Между индукционными гранями нередко входящие углы различной величины. Индукционные рёбра – граница между двумя индукционными гранями. Индукционные поверхности представляют наглядный пример проявления антисимметрии А.В. Шубникова на кристаллах.

Синхронно могут расти обычные кристаллы, скелетные кристаллы, расщеплённые, блочные кристаллы, сферокристаллы, сферолиты, сфероидолиты… Имеются указания на зависимость густоты расположения индукционных рёбер от степени пересыщения раствора. Синхронно могут расти гигантские индивиды и мелкие кристаллы, в этом случае могут возникать индукционные поверхности нескольких порядков.

Рассмотрим индукционные поверхности роста кристалл – кристалл.

Индукционные поверхности роста кристалл – сферолит. Рисунки совместного роста непрерывного и с остановками. Существенное замечание о механизие роста сферолитов нитевидных кристаллов (халцедона…). При наличии индукционных поверхностей совместного роста сферолит – кристалл (например, халцедон – кальцит) или зон геометрического отбора в основании сферолитовых корок вариант образования из коллоидных растворов, гелей исключается.

Индукционные поверхности роста сферолит – сферолит.



Бывают ли агрегаты совместно и одновременно выросших кристаллов, где отсутствуют индукционные поверхности между соприкасающимися индивидами? Да, таковы агрегаты совершенных нитевидных кристаллов (асбесты, цилиндрит…). Причина отсутствия индукционных поверхностей с таких агрегатах в том, что нитевидные кристаллы растут основаниями и получающиеся волокна в начале не соприкасаются. Такой рост нитевидных кристаллов происходит на пористом, полупроницаемом основании, на мембранах, в том числе возникающих при раскристаллизации коллоидных растворов. Так, гипс-селенит и сходные агрегаты галита и эпсомита растут среди и на пористых глинах и аргиллитах, мергелистых известняках. Данный механизм роста нитевидных кристаллов широко распространён – так образуются разнообразные агрегаты растворимых солей в месторождениях осадочных солей и боратов, в коре выветривания рудных месторождений, в пещерах, подземных горных выработках.

Иные типы поверхностей кристаллов

в минеральных агрегатах
Иные типы поверхностей зёрен в минеральных агрегатах возникают при процессах различных преобразований – физико-химических, механичес-ких, выросших минеральных агрегатов. Это процессы перекристаллизации, растворения, дробления, реологии = пластического течения. При этом возни-кают так называемые вторичные поверхности зёрен.

Поверхности перекристаллизации – грануломорфные. Минеральные агрегаты состоят из гранул = полиэдров перекристаллизации. Подробности рассмотрим далее.

Поверхности растворения – срезают элементы первичного ростового строения, выглядят как конусы, каналы и щели вдоль границ блоков, винтовых и краевых дислокаций, трещин и т.п. На поверхностях оплавления не отмечена макроскульптура конусов, но имеются микроконусы взрыва перегретых флюидных включений.

Поверхности дробления – плоскости спайности, отдельности, раковистого излома и более сложные формы. При этом индивиды имеют характерные морфологические признаки обломков. Довольно трудно определять поверхности окатывания и отличать их от поверхностей округлых индивидов иного происхождения. Поверхность окатывания срезает первичную ростовую анатомию. На микроуровне поверхность окатывания всегда шероховата, с царапинами и следами ударов.

Реоморфная поверхность – поверхность индивидов в минеральных агрегатах, претерпевших пластическую деформацию. Реоморфные поверхности и чаще их фрагменты широко распространены, так как редкие горные породы или рудные агрегаты не были подвержены в той или иной степени пластическим деформациям. При этом, кристаллы механически двойникуются, катятся, царапают друг друга, развальцовываются и т.д.; в полости, инкрустированные кристаллами жёстких минералов (кварц, пирит), вдавливается (внедряется, экструдирует) пластичный материал (галенит…).
Границы и форма кристаллов в минеральных агрегатах
Во всяком поликристаллическом материале существуют границы, разделяющие соседние зёрна. На границах концентрируются структурные дефекты, это участки с более высокой энергией. Поэтому существует «движущая сила», которая стремится уменьшить поверхность границ и соответственно вызывает их движение. Кроме того, вдоль границ зёрен в минеральных агрегатах концентрируются флюидные включения, адсорбированные вещества и т.п. Коэффициенты диффузии на границах зёрен на несколько порядков выше, чем внутри зерна, а энергия активации примерно в два раза ниже. Образно говоря, границы зёрен – это дренажная система минеральных агрегатов.

Структура и типы границ зёрен. Мало угловые границы состоят из выстроенных в ряд дислокаций (ФМ-2, глава 7, рис. 1, стр. 403). Самые типичные границы – больше угловые (там же, рис. 2а и 2б). Такая граница содержит относительно большие промежутки между атомами, а также служит местом концентрирования атомов – примесей. Особый случай больше угловых границ – двойниковые границы. Атомы в плоскости двойниковой границы когерентны с каждым из прилегающих индивидов минерала, причём расстояния от этих атомов до первых ближайших соседей неизменны вдоль всей границы, несогласованность в расположении имеется только по отношению к вторым и более далёким соседям. Двойниковые границы можно рассматривать как единичные дефекты упаковки, т.е. границы с невысокой энергией.

Между разными минералами могут возникать когерентные границы, в особенности в агрегатах типа распада структур твёрдых растворов. Атомы вдоль когерентных границ принадлежат в равной степени обеим соседним минералам.

Большая доля энергии границы обусловлена отклонениями расстояний между соседними атомами на границе от равновесных величин. Дополнительная, но меньшая доля энергии границы обусловлена несогласо-ванностью в расположении вторых и более удалённых атомов. Поэтому, больше угловые границы обладают большей энергией, а двойниковые границы и границы между когерентными фазами – меньшей.

Движение границ зёрен. Движущая сила этого процесса – уменьшение свободной энергии при переходе атома через границу раздела с выпуклой стороны на вогнутую сторону, где атом приобретает большее число соседей на равновесных межатомных расстояниях. В результате при процессах отжига при достаточно высокой температуре граница движется по направлению к центру своей кривизны и большие зёрна растут за счёт меньших зёрен (ФМ-2, глава 7, рис. 7б, стр. 409). В итоге общая площадь границ в единице объёма сокращается.

На движение границ влияют величины зерна, температура, присутствие нерастворимых примесей и мелких частиц другой фазы. Зёрна меньшей величины обеспечивают большую движущую силу для перемещения атомов через границу. Когда движущаяся граница встречает на своём пути диспергированные частицы другой фазы, общая площадь границы должна увеличиться, а радиус кривизны на отдельных участках изменить своё направление. Поэтому рост зерна затормозится. Мелкие частицы другой фазы весьма эффективно тормозят рост зёрен матрицы.



Величина зёрен. В равнозернистом агрегате средняя площадь сечения зерна примерно равна 0.8 максимальной площади зёрен. В минеральных агрегатах может происходить аномальный рост зерна. Если данное зерно по каким-либо причинам стало значительно больше, чем окружающие зёрна, то оно получит дополнительные преимущества для дальнейшего роста, благодаря большей кривизне его границ (ФМ-2, глава 7, рис. 10).

В полиминеральном минеральном агрегате на взаимное расположение различных фаз большое влияние оказывает энергия их границ. Если межфазная энергия велика, то фаза-примесь сосредотачивается около вершин зёрен матрицы и для формы зёрен матрицы характерны больше угловые границы (ФМ-2, глава 7, рис. 14а). Если межфазная энергия мала, то фаза-примесь вытянута по границам зёрен матрицы, для формы зёрен матрицы характерны малые двугранные углы (ФМ-2, глава 7, рис. 14б).

После этих предварительных замечаний перейдём к рассмотрению явлений перекристаллизации.
Перекристаллизация
Перекристаллизация – это изменение формы и размеров кристаллов минеральных агрегатов обычно без изменения фазового состава системы. Перекристаллизация всегда начинается с рекристаллизации, при этом в напряжённых индивидах зарождаются мелкие не напряжённые индивиды того же минерала. Они растут за счёт напряжённой матрицы, «съедая» сначала самые деформированные участки. Происходит грануляция напряжё-нных индивидов. Частный случай рекристаллизации – раскристаллизация вулканического стекла…

Вновь образованные при рекристаллизации индивижы обычно имеют сложную форму до того, как они начинают соприкасаться друг с другом. После соприкосновения начинается изометризация индивидов, образуются полиэдры перекристаллизации. «Грани» полиэдров в общем случае не совпадают с кристаллографически возможными гранями индивидов, они плавно изогнуты в ту и другую стороны, им нельзя дать какой-либо символ. Такая поверхность индивидов называется грануломорфной.


Рекристаллизация

Рекристаллизация – это широко распространённый процесс, происходящий при отжиге метастабильных высокотемпературных минеральных агрегатов и/или механически деформированных, механически напряжённых минеральных агрегатов – горных пород и рудных образований. Процесс термически активированный. При рекристаллизации изменяется ориентация любого участка материала, возможно, более, чем один раз. Изменение ориентировки является результатом перемещения в материале больше угловых границ.

При первичной рекристаллизации зарождаются новые зёрна, часто на границах зёрен деформированного материала. Возникающие зёрна растут за счёт деформированной структуры пока последняя не будет полностью поглощена. После этого границы зёрен продолжают мигрировать, но медленнее, - это стадия поедание одних новых зёрен другими более крупными, при этом лишь небольшое число зёрен растёт интенсивно за счёт всех остальных. Этот процесс называют вторичной рекристаллизацией или огрублением структуры.

Законы рекристаллизации. 1. Чтобы вызвать рекристаллизацию необходима некоторая минимальная деформация. 2. Чем меньше степень деформации, тем выше температура, необходимая для начала рекристалли-зации. 3. С увеличением длительности отжига температура рекристалли-зации понижается. 4. Конечный размер зерна зависит главным образом от степени деформации и от температуры отжига. Обычно размер зерна тем меньше, чем больше степень деформации и ниже температура отжига. 5. Новые зёрна не могут поглощать деформированные зёрна идентичной ориентации. 6. Продолжение нагрева после завершения первичной рекрис-таллизации вызывает увеличение размера зёрен в минеральных агрегатах. Первая стадия роста больших зёрен происходит медленно. Перед началов вторичной рекристаллизации имеется инкубационный период. При рекриста-ллизации происходит достаточно полная сегрегация примесей различного рода (минеральных и иных) вдоль границ новообразованных зёрен. Сказ о Первоуральском месторождении кварцито-песчаников.

Структуры минеральных агрегатов, подвергшихся перекристаллиза-ции – бластовые, гранобластовые.

После окончания первичной рекристаллизации микроструктура ещё не вполне стабильна. Главная движущая сила, связанная с накопленной энергией деформации, исчерпана, но минеральный агрегат по-прежнему содержит границы зёрен, обладающие конечной поверхностной энергией. Это состояние метастабильно, поскольку идеальная термодинамическая стабильность достигается только при превращении минерального агрегата в монокристалл. Полная аналогия с состоянием пены из мыльных пузырьков, которые постепенно сливаются в один пузырь.

В условиях длительного отжига = длительной перекристаллизации границы зёрен мигрируют, зёрна стремятся приобрести некоторую предельно равновесную форму. Эта форма близка к сотам, гексагонам, с входящими углами границ зёрен около 1200, все границы у таких зёрен большеугловые, треугольник сил в тройной точке даёт стабильное состояние. Посмотрим на реальные величины углов для ряда минералов мономинеральных метаморфических пород глубинной и высокоТ гранулитовой фации: кварц - 1200 ± 100, ортоклаз - 1200 ± 80, плагиоклаз 1200 ± 100, гранат 1210 ± 110, ромбопироксен 1200 ± 80, клинопироксен 1200 ± 180, кальцит 1200 ± 110. В трёхмерном варианте единственной полностью устойчивой конфигурацией является система четырнадцати сторонних полиэдров (относительно близких к кубооктаэдру) с границами двойной кривизны.

Итак, имеются чёткие критерии равновесных структур минеральных агрегатов: тройные углы близкие к 1200, близкая к гексагону шестигранная форма двумерного сечения, площадь которого близка к 0.8 площади максимальных зёрен, 12-14-гранная форма в объёме с выпуклыми и вогнутыми гранями. Гранулы = полиэдры перекристаллизации весьма гомогенны и имеют совершенное внутреннее строение, в них отсутствуют ростовая зональность, секториальность, проявления расщепления, блочности и скрученности.

Напротив, крайне неравновесные структуры минеральных агрегатов – это обычные структуры магматитов (порфировые, офитовые, сферолито-вые…) и тектонитов с числом граней у зёрен до нескольких десятков (в роговиках, тектонитах) или, напротив, 6-8 (в магматитах). Соответственно, здесь большой разброс углов междк гранями в тройных точках.

Итак, представление о равновесии термодинамическом, физико-химическом дополняем представлением о равновесных формах зёрен – гранулах, полиэдрах перекристаллизации.

Своеобразные структуры перекристаллизации – гнейсовидные (перекристаллизация по принципу Рикке). Вторичная рекристаллизация под влиянием одностороннего давления = стресса: кристалл одновременно растворяется со стороны приложенного давления и растёт за счёт освобождающегося вещества с противоположных сторон. Когда величина стресса (давления) ниже, а минеральные агрегаты сложены минералами с резко различной механической устойчивостью, вокруг отдельных жёстких (прочных) кристаллов (пирит, арсенопирит…) в так называемых тенях давления развиваются агрегаты кварца, слюд, карбонатов, хлорита… стебельчатого - пластинчатого строения. Такие структуры возникают при совместной деформации жёсткого тела и более пластичной матрицы.

Структуры метакристаллов, которые выросли синхронно с процессами динамо-термального метаморфизма – а) известные Вам порфиробласты граната…с S-образными формами включений (порфиробласты вращались во время своего роста), б) трещины в порфиробластах щелочных амфиболов в метаморфитах фации голубых сланцев последовательбно залечиваются всё более позними генерациями амфиболов (разноцветных) - так называемый паракристаллический микробудинаж, - признак синкинематической перекристаллизации.

.

Дополнительные замечания о некоторых структурах и текстурах

минеральных агрегатов
Морфологическая единица структур – минеральное зерно, индивид. Морфологическая единица текстур – минеральный агрегат. Итак, текстура = сочетание в пространстве минеральных агрегатов неравнозначных по структуре и минеральному составу.

Гравитационные текстуры минеральных агрегатовтекстуры, отражающие различные виды проявления силы тяжести при формировании минеральных агрегатов, текстуры макроскопические и микроскопические.

Минеральные уровни – текстуры седиментации, прежде всего уровни расположения присыпок (осколков кристаллов, отдельных кристаллов…). Горизонты сульфидных капель, расслоенные капли – внизу более тяжёлый пирротин, вверху более лёгкий халькопирит.

Отстойники – в пещерах, в агатах… Уругвайские агаты. Наклонённые отстойники.

Карнизы и карнизы со свисанием.

Асимметрия роста кристаллов.

Текстуры обрушения на дно полостей – не сцементированные и сцементированные.

Текстуры оползания = текстуры гравитационной неустойчивости, когда слабо литифицированные тяжёлые минеральные агрегаты вминаются, втекают в среду более лёгких минеральных агрегатов.

Минеральные отвесы – текстуры роста в полостях = сталактиты и сталагмиты. Псевдосталактиты. Завеси, гребни. Формы, переходные от сталактитовой к кристалликтитовой – люстры, возникающие из очень слабой капели.


Некоторые специфические структуры
Эвтектические структуры. Эвтектики подразделяют на три типа – нормальные, аномальные и разделённые. Нормальные эвтектики = фронт кристаллизации проходит по поверхности раздела расплав – две твёрдые фазы, находящиеся в эвтектическом срастании (графика кварц – олигоклаз или ортоклаз…). Аномальные эвтектики – кристаллические фазы тесно срослись, как и в нормальных, но их расположение иное – кристаллы врастают в расплав попеременно, - то одна, то другая. Разделённые эвтектические структуры – здесь одна фаза начинает кристаллизоваться раньше и вызывает образование зародышей другой фазы, последняя в свою очередь вызывает зарождение первой и т.д.; в результате затвердевания всего расплава возникают колонии эвтектических срастаний двух фаз, выросших в разных точках объёма, т.е. фронта кристаллизации в данном случае нет. Среди разделённых эвтектик различают пластинчатые, стержневые, глобулярные. Пластинчатые и стержневые могут быть построены радиально. Пример пластинчатых эвтектических срастаний – ортоклаз+кальсилит. Стержневые эвтектические срастания – нередко графические кварц-полевошпатовые срастания. Глобулярные эвтектические структуры (нередко орбикулярные и нодулярные) – хромит-оливиновые агрегаты.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет