Модель физического процесса.
Определение температуры воды при ее нагревании в зависимости от времени. Движение тела, брошенного под углом к горизонту.
(см. вложения к лекции (excel, лист 1, лист 3))
Предлагаю решить задачу о нагревании воды, используя моделирование процесса с помощью тренда в Excel .
Введем таблицу значений температуры воды при нагревании в зависимости от времени.
ВРЕМЯ
|
0
|
1
|
3
|
5
|
7
|
9
|
10
|
ТЕМПЕРАТУРА
|
20
|
26,2
|
36,8
|
45,6
|
52,7
|
58,5
|
61,1
|
Необходимо вычислить температуру воды, которая была через 6 минут после начала нагревания.
6 минут – это промежуточное значение, которого нет в таблице, поэтому нам нужно рассмотреть значение температуры как значение некоторой функции дискретного ряда.
Представим этот ряд графически плавной кривой, т. е. определим аналитическую зависимость температуры от времени, например в виде полинома, экспоненты, линейной зависимости и т. д. Полученная аналитическая зависимость называется уравнением регрессии, а ее график – линией тренда.
Создадим диаграмму в виде графика. Нанесем на диаграмму – график линию тренда.
(Диаграмма, Добавить линию тренда)
Excel дает возможность использовать несколько типов линий тренда: линейный, логарифмический, полиномиальный, степенной, экспоненциальный. В нашем случае лучшим вариантом будет полиномиальная зависимость 6-й степени.
(Вкладка - Тип, Полиномиальная зависимость 6-й степени)
(Вкладка – Параметры, Показывать уравнение на диаграмме, Поместить на диаграмму величину достоверности.)
Далее: полученную формулу копируем в соседнюю ячейку. Вводим необходимое время 6 мин, компьютер нам выдает значение температуры.
Все очень просто!!!
Кроме того можно смоделировать любой процесс, например, для механического движения и на основе этой модели решить любую задачу. Вот одна из них. Движение тела, брошенного под углом к горизонту.
- Задаем исходные данные: начальную скорость и угол.
- Строим график движения.
- Изменяя скорость и угол, мы можем увидеть, какие изменения произойдут при движении данного тела.
Опять задача решается быстро и просто!
V=
|
25
|
м/c
|
|
|
|
|
|
|
|
|
a=
|
45
|
град
|
|
|
|
|
t
|
x=V*cosa*t
|
y=V*sina*t-g*t^2/2
|
0
|
0
|
0
|
0,2
|
3,535533906
|
3,339533906
|
0,4
|
7,071067812
|
6,287067812
|
0,6
|
10,60660172
|
8,842601718
|
0,8
|
14,14213562
|
11,00613562
|
1
|
17,67766953
|
12,77766953
|
1,2
|
21,21320344
|
14,15720344
|
1,4
|
24,74873734
|
15,14473734
|
1,6
|
28,28427125
|
15,74027125
|
1,8
|
31,81980515
|
15,94380515
|
2
|
35,35533906
|
15,75533906
|
2,2
|
38,89087297
|
15,17487297
|
2,4
2,6
|
42,42640687
45,96194078
|
14,20240687
12,83794078
|
|
|
Вопросы для самоконтроля:
Что такое математическое моделирование в физике?
Виды компьютерных моделей.
Как производятся физические исследования на основе моделей?
Что подразумевается под моделированием движения какого-либо тела?
Этапы создания физической модели.
Этапы создания модели в электронных таблицах.
Достарыңызбен бөлісу: |