Лекция конспектісі 6В070400-Есептеу техникасы және бағдарламалық қамтамасыз ету мамандығы үшін



бет39/56
Дата03.01.2022
өлшемі1.26 Mb.
#450557
түріЛекция
1   ...   35   36   37   38   39   40   41   42   ...   56
lektsiya konspektisi

Дәрістік сабақ № 7
7 тақырып

Интерполациялық квартуралық формулалары.

Ең жақсы алгебралық дәлдікті квадратуралық формулалары.

Коши есебінің бір және көп қадамды әдістері. Орнықтылық. Жинақтылық. Берік жүйелерді интегралдау.



Жоспары:

(қаралатын сұрақтар тізімі)


  1. Квадратуралық формулалардың дәлдігін бағалау

  2. Сандық интегралдау есебінің қойылуы. Квадратуралық формулалардың дәлдігін бағалау туралы

  3. Қарапайым дифференциалдық теңдеулерді сандық шешу. Біртіндеп жуықтау әдісі.


Дәріс өткізу түрі: Дәріс -ақпарат(мәтін)
Мазмұны:

(дәріс материалы)




  1. Квадратуралық формулалардың дәлдігін бағалау

Трапеция және Симпсон формулалары бойынша интегралдау әдісінің қателігін бағалау, тек интеграл астындағы функция аналитикалық түрде берілгенде ғана мүмкін болады. Бұл жағдайдың өзінде де, қарастырылған интегралдау әдістерінің әрқайсысы үшін жарамды, тәжірибе жүзінде кеңінен қолданылатын келесі әдісті қарастырамыз.

Ізделініп отырған интеграл кесіндісін n және 2n бөлікке бөлу арқылы 2 рет есептеледі (интегралдағанда Симпсон формуласы бойынша n жұп сан болу керек). Содан соң интегралдан алынған мән (оларды In және I2n деп белгілейміз) салыстырылады және сәйкес бірінші ондық белгі дұрыс деп саналады.

Симпсон әдісінің қателігін бағалау үшін жай формула қолданылады.

Rn, R2n -Симпсон формуласы бойынша интегралдау қателіктері, сәйкесінше кесінді n және 2n бөлікке бөлінеді. (8.36) бағалауды есептей отырып, мына теңдікті құруға болады:

(8)

Мұндағы, hn және h2n - кесіндінің бөлінгендегі ұзындығы (нтегралдау қадамы) 1-ші және 2- ші жағдайда.

Бізге белгілі h2n =hn /2 (6.38) формуладан аламыз:

Rn=16R2n (9)

Егер I-интегралдық шын мән болса, онда I=In+Rn және I=I2n +R2n бұдан I+16R2n=I2n+R2n , яғни:

(10)

(6.40) формула Симпсон әдісінің қателігін тәжірибелі бағалауда қолайлы, бірақ екі рет есептеуді қажет етеді.

(6.33) және (6.36) бағалау формулаларынан трапеция және Симпсон әдістері бойынша интегралдау қателігі интегралдау қадамының азаюымен бірге азаюы байқалады. (әсіресе бұл (6.39) Симпсон формуласына тән). Осының негізінде шешім қабылдайық, бөлінген кесіндінің саны біртіндеп өскенде біз интегралдың мәнін аламыз, бұның бәрі шындыққа жуықтайды. Бірақ бұның шешімі теориялық мәнге тура келеді. Тәжірибе жүзінде есептесек бөлінген кесіндінің саны біртіндеп екі еселенгенде қателіктің салмағы жуықтап алынады. Бұның мәні әрбір моментке дейін интегралдық шешімнің жеткен нүктесіне шектеу қояды (нақтылай қарасақ көрсетілген қатенің интегралдық шешіміне әсері көрсетілген).





  1. Достарыңызбен бөлісу:
1   ...   35   36   37   38   39   40   41   42   ...   56




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет