МАГНЕТОСОПРОТИВЛЕНИЕ, относительное изменение уд. электрич. сопротивления проводника в магн. поле Н к его уд. сопротивлению 0 в отсутствии поля. Различают поперечное М. /0=(-0)/0 и продольное
║/0=(║-0)/0 (см. Магниторезистивный эффект).
МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ, возникновение в кристаллах намагниченности J при помещении их в электрич. поле E (J=E). М. э. возможен только в магнитоупорядоченных кристаллах (антиферро-, ферри- и ферромагнетиках). На возможность существования М. э. указали впервые Л. Д. Ландау и Е. М. Лифшиц (1957). И. Е. Дзялошинский (1959) на основании данных о магн. симметрии кристаллов предсказал, в каких из известных антиферромагнетиков должен наблюдаться М. э. Экспериментально эффект был открыт Д. Н. Астровым (1960) в антиферромагнитном кристалле Cr2O3. Величина М. э. мала. Макс. значение коэф. для Cr2O3
составляет ~2•10-6. Существует и обратный эффект — возникновение электрич. поляризации Р при помещении кристалла в магн. поле Н (Р=Н).
• Вонсовский С. В., Магнетизм, М., 1971; Б о р о в и к-Р о м а н о в А. С., Антиферромагнетизм, в кн.: Антиферромагнетизм и ферриты, М., 1962 (Итоги науки. Физико-математические науки, т. 4).
А. С. Боровик-Романов.
МАГНЕТРОН, многорезонаторный прибор для генерации эл.-магн. колебаний СВЧ, основанный на вз-ствии эл-нов, движущихся в магн. поле по криволинейным траекториям с возбуждаемым эл.-магн. полем. Анод М.— массивный полый цилиндр, во внутр. части к-рого вырезаны объёмные резонаторы со щелями, выходящими на внутр. поверхность цилиндра (рис., a). По оси цилиндра расположен катод. Под действием магн. поля Н, направленного вдоль оси цилиндра, траектория эл-нов, вылетающих с катода, искривляется. Когда в резонаторах возбуждаются колебания, то около щелей возникает переменное электрическое поле. Под воздействием СВЧ поля и скрещенных статических электрич. и магн. полей вылетающие с катода эл-ны образуют сгустки («спицы», рис., б).
Эл-ны в сгустках при вз-ствии с тормозящим СВЧ полем отдают полю потенциальную энергию и приближаются к аноду. На анод они попадают, отдав эл.-магн. полю почти всю энергию, что обусловливает высокий (до 90%) кпд. Существуют М.— усилители с разомкнутой цепочкой резонаторов (а м п л и т р о н ы и др.). М. способны генерировать колебания вплоть до миллиметрового диапазона эл.-магн. волн и отдавать мощности до тыс. квт в импульсном режиме.
• Лебедев И. В., Техника и приборы СВЧ, 2 изд., т. 2, М., 1972: Вайнштейн Л. А., Солнцев В. А., Лекции по сверхвысокочастотной электронике, М., 1973; Кукарин С. В., Электронные СВЧ приборы, 2 изд., М., 1981.
МАГНИТ ПОСТОЯННЫЙ, изделие определённой формы (в виде подковы, полосы и др.) из предварительно намагниченных ферромагнитных или ферримагнитных материалов, способных сохранять большую магнитную индукцию после устранения намагничивающего поля (т. н. магнитно-твёрдых материалов). М. п. широко применяются как автономные источники пост. магн. поля в электротехнике, радиотехнике, автоматике. Св-ва М. п. определяются характером размагничивающей ветви петли магн. гистерезиса материала, из к-рого М. п. изготовлен. Чем больше коэрцитивная сила Нс и остаточная магн. индукция Br материала (рис.), тем больше он подходит для М. п. Индукция в М. п. может равняться наибольшей остаточной индукции Br лишь в том случае, если он представляет собой замкнутый магнитопровод. Обычно же М. п. служит для создания магн. потока в возд. зазоре, напр. между полюсами подковообразного магнита. Возд. зазор уменьшает индукцию (и намагниченность) М. п.; влияние зазора подобно действию нек-рого внеш. размагничивающего поля Hd. Значение поля Hd, уменьшающего остаточную индукцию Br до значения Bd (рис.), определяется конфигурацией М. п. (см. Размагничивающий фактор). Т. о., при помощи М. п. могут быть созданы магн. поля, индукция к-рых B Br.
Кривые размагничивания (а) и магнитной энергии (б) ферромагнетика: Br — остаточная магнитная индукция; Нс — коэрцитивная сила; Hd — размагничивающее поле; Bd — индукция в поле Hd.
Действие М. п. наиболее эффективно в том случае, если его состояние соответствует точке кривой размагничивания, где максимально значение (BH)тах, т. е. максимальна магн. энергия ед. объёма материала.
М. п. изготовляют из сплавов на основе Fe, Co, Ni, Al, гексагональных ферритов и др. К наиболее эффективным материалам для М. п. относятся ферримагнитные интерметаллич. соединения редкоземельных металлов
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ (данные усреднены)
Sm и Nd с Со (типа SmCo5). Эти соединения обладают рекордно высокой величиной (BH)max (табл.).
Важным условием для достижения наивысших магн. характеристик М. п. явл. его предварит. намагничивание до состояния магнитного насыщения. Другое важное условие — неизменность магн. св-в со временем, отсутствие магнитного старения. М. п., изготовленные из материалов, склон-
361
ных к магн. старению, подвергают спец. обработкам (термической, перем. магн. полем и др.), стабилизирующим состояние магнитов.
• Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Постоянные магниты. Справочник, пер. с англ., М.—Л., 1963; Преображенский А. А., К а в а л е р о в Л. А., Стабильность постоянных магнитов, в кн.: Энциклопедия измерений, контроля, автоматизации, в. 14, М., 1970; Белов К. П., Редкоземельные магнитные материалы, «УФН», 1972, т. 106, в. 2.
МАГНИТ СВЕРХПРОВОДЯЩИЙ, соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омич. сопротивлением. Если она замкнута накоротко, то наведённый в ней электрич. ток циркулирует, практически не изменяясь, сколь угодно долго и его магн. поле остаётся стабильным (лишённым пульсаций). Совр. М. с. позволяют получать поля до 150—200 кГс.
Обмотка М. с. теряет сверхпроводимость при повышении темп-ры выше критической температуры Тк сверхпроводника, при достижении в обмотке критич. тока Iк или критического магнитного поля Нк. Учитывая это, для обмоток М. с. применяют материалы с высокими значениями Тк, Iк и Hк (табл.).
Для предотвращения потери сверхпроводимости отд. участками обмотки обмоточные материалы выпускаются в виде проводов и шин, состоящих из тонких жил сверхпроводника в матрице норм. металла с высокой электро- и теплопроводностью (Си или А1). Жилы делают не толще неск. десятков мкм, что снижает тепловыделение в обмотке при проникновении в неё растущего с током магн. поля. Кроме того, весь проводник при изготовлении скручивают вдоль оси, что способствует уменьшению токов, наводящихся в сверхпроводящих жилах и замыкающихся через металл матрицы. Обмоточные материалы из хрупких интерметаллич. соединений Nb3Sn и V3Ga выпускают в виде лент из Nb или V толщиной 10—20 мкм со слоями интерметаллич. соединений (2—3 мкм) на обеих поверхностях. Такая лента для упрочнения покрывается тонким слоем меди или нержавеющей стали.
Сравнительно небольшие М. с. (с энергией магн. поля до неск. сотен кДж) изготовляют с плотно намотанной обмоткой, содержащей 30—50% сверхпроводника в сечении провода. У крупных М. с., с энергией поля в десятки и сотни МДж, проводники (шины) в своём сечении содержат 5— 10% сверхпроводника, а в обмотке предусматриваются каналы, обеспечивающие надёжное охлаждение витков жидким гелием.
Эл.-магн. вз-ствие витков соленоида создаёт механич. напряжения в обмотке, к-рые в случае длинного
СВОЙСТВА СВЕРХПРОВОДЯЩИХ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ДЛЯ ОБМОТОК СВЕРХПРОВОДЯЩИХ МАГНИТОВ
Рис. 1. Осн. элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внеш. цепям; 2 — многожильный сверхпроводящий провод в изоляц. покрытии, припаянный к контакту; 3 — рабочий объём соленоида, макс. напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлич. каркас соленоида; 6 — сверхпроводящая обмотка; 7 —силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.
соленоида с полем ~ 100 кГс эквивалентны внутр. давлению ~ 400 ат (~3,9•107 Н/м2). Обычно для придания М. с. необходимой механич. прочности применяют спец. бандажи (рис. 1).
Рис. 2. Установка Института атомной энергии им. И. В. Курчатова, в к-рой испытываются секции сверхпроводящих магн. систем диаметром ок. 1 м. В ср. части фотографии видна закреплённая на крышке криостата испытываемая секция, внизу — цилиндрич. криостат.
Рис. 3. Схематич. изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; в — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство.
Механич. напряжения могут быть значительно снижены такой укладкой витков обмотки, при к-рой линии тока близки по направлению к силовым линиям магн. поля всей системы в целом (т. н. «бессиловая» конфигурация обмотки).
При создании в обмотке М. с. электрич. тока требуемой величины сначала включают нагреватель, расположенный на замыкающем обмотку сверхпроводящем проводе (шунте). Нагреватель повышает темп-ру замыкающего провода выше его Тк, и цепь шунта перестаёт быть сверхпроводящей. Когда ток в соленоиде достигнет требуемой величины, нагреватель выключают. Цепь шунта, охлаждаясь, становится сверхпроводящей, и после снижения тока питания до нуля в обмотке М. с. и замыкающем её проводе начинает циркулировать незатухающий ток.
Работающий М. с. находится обычно внутри криостата (рис. 2) с жидким гелием (темп-pa кипящего гелия 4,2 К ниже Тк сверхпроводящих обмоточных материалов). Для предотвращения возможных повреждений сверхпроводящей цепи и экономии жидкого гелия при выделении запасённой в М. с. энергии в цепи М. с. имеется устройство для вывода энергии на разрядное сопротивление (рис. 3).
362
М. с. используют для исследования магн. электрич. и оптич. св-в в-в, в экспериментах по изучению плазмы, ат. ядер и элем. ч-ц. М. с. получают распространение в технике связи и радиолокации, в кач-ве индукторов магн. поля электромашин. Принципиально новые возможности открывает сверхпроводимость в создании М. с.— индуктивных накопителей энергии с практически неограниченным временем её хранения.
• Р о у з-И н с А., Родерик Е., Введение в физику сверхпроводимости, пер. с англ., М., 1972; 3 е н к е в и ч В. Б., С ы ч е в В. В., Магнитные системы на сверхпроводниках, М., 1972; К р е м л е в М. Г., Сверхпроводящие магниты, «УФН», 1967, т. 93, в. 4.
МАГНИТНАЯ АНИЗОТРОПИЯ, неодинаковость магн. св-в тел по разл. направлениям. Причина М. а. заключается в анизотропном характере магн. вз-ствия между атомами носителями магнитного момента в в-вах. В изотропных газах, жидкостях, аморфных телах (напр., металлич. стёклах) и поликристаллич. тв. телах М. а. в макромасштабе, как правило, не проявляется. Напротив, в монокристаллах М. а. приводит к большим наблюдаемым эффектам, напр. к различию величины магнитной восприимчивости парамагнетиков вдоль разл. направлений в кристалле. М. а.— результат магн. вз-ствия соседних магн. ионов и более сложных вз-ствий эл-нов этих ионов с существующими внутри кристалла электрич. полями (см. Впутрикристаллическое поле). Особенно велика М. а. в монокристаллах ферромагнетиков, где она проявляется в наличии осей лёгкого намагничивания (гл. осей симметрии кристаллов), вдоль к-рых направлены векторы самопроизвольной намагниченности Js ферромагн. доменов (см. Ферромагнетизм). Мерой М. а. для данного направления в кристалле явл. работа намагничивания внеш. магн. поля, необходимая для поворота вектора Js из положения вдоль оси наиболее лёгкого намагничивания в новое положение — вдоль внеш. поля. Эта работа при пост. темп-ре определяет свободную энергию М. a. Faн для данного направления. Зависимость Fан (it ориентации Js в кристалле определяется из соображений симметрии (см. Симметрия кристаллов). Напр., для кубич. кристаллов:
где 1,2, 3 — направляющие косинусы Js относительно осей кристалла [100] (рис.), К1 — первая константа естественной кристаллографич. М. а. Величина и знак её определяются атомной кристаллич. структурой в-ва, а также зависят от темп-ры, давления и т. п. Напр., в Fe при комнатной темп-ре K1 ~ 105 эрг/см3 (104 Дж/м3), а в Ni К1 ~ -104 эрг/см3 (-103 Дж/м3). С ростом темп-ры К1 уменьшается, стремясь к нулю в
Магн. анизотропия кубич. монокристаллов железа. Приведены кривые намагничивания для трёх гл. кристаллографич. осей [100], [110] и [111] ячейки кристалла железа; J — намагниченность, Н — напряжённость намагничивающего поля.
Кюри точке. У антиферромагнетиков, ввиду наличия у них не менее двух магнитных подрешёток (J1 и J2), имеются, по крайней мере, две константы М. а. Для одноосного антиферромагн. кристалла
z — направление оси М. а. Значения констант а и b того же порядка, что и у ферромагнетиков. У антиферромагнетиков наблюдается большая анизотропия магн. восприимчивости ; вдоль оси лёгкого намагничивания к стремится с понижением темп-ры к нулю, а в перпендикулярном к оси направлении (ниже Нееля точки) к не зависит от темп-ры.
Экспериментально константы М. а. могут быть определены из сопоставления значений энергии М. а. для разл. кристаллографич. направлений. Другой метод определения констант М. а. сводится к измерению моментов вращения, действующих на диски из ферромагн. монокристаллов во внеш. поле (см. Анизометр магнитный), т. к. эти моменты пропорц. константам М. а. Наконец, эти константы можно определить графически по площади, ограниченной кривыми намагничивания ферромагн. кристаллов и осью намагниченности, ибо эта площадь также пропорц. константам М. а. Значения констант М. а. могут быть определены также из данных по электронному парамагнитному резонансу (для парамагнетиков), по ферромагнитному резонансу (для ферромагнетиков) и по антиферромагнитному резонансу (для антиферромагнетиков). Вследствие магнитострикции в магнетиках наряду с естеств. кристаллографич. М. а. наблюдается также магнитоупругая анизотропия, к-рая возникает при наложении на образец внеш. односторонних напряжений. В поликристаллах, при наличии в них текстуры магнитной или текстуры кристаллографической, также проявляется М. а.
• Вонсовский С. В., Магнетизм, М., 1971.
С. В. Вонсовский.
МАГНИТНАЯ АНТЕННА, антенна в виде проволочной катушки с сердечником из магн. материала с высокой магн. проницаемостью. Относится к классу магн. дипольных антенн. Диаграмма направленности М. а. совпадает с диаграммой электрич. вибратора (тороид), но векторы поля имеют иную поляризацию (ЕН, Н -Е). Применяется в диапазоне длинных и ср. волн.
МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ, величина, характеризующая связь намагниченности в-ва с магн. полем в этом в-ве.
М. в. в статич. полях равна отношению намагниченности в-ва J к напряжённости Н намагничивающего поля: =J/H; — величина безразмерная. М. в., рассчитанная на 1 кг (или 1 г) в-ва, наз. удельной (уд=/, где — плотность в-ва), а М. в. одного моля — молярной (или атомной): =уд•М, где М — молекулярная масса в-ва. С магнитной проницаемостью M. в. в статич. полях (статич. М. в.) связана соотношениями: =1+4 (в ед. СГС), =1+ (в ед. СИ).
М. в. может быть как положительной, так и отрицательной. Отрицательной обладают диамагнетики, они намагничиваются против поля; положительной — парамагнетики и ферромагнетики, они намагничиваются по полю. М. в. диамагнетиков и парамагнетиков мала (~10-4—10-6), она слабо зависит от Н и то лишь в области очень сильных полей (и низких темп-р). Значения М. в. см. в табл.
М. в. достигает особенно больших значений в ферромагнетиках (от неск. десятков до многих тыс. единиц),
АТОМНАЯ (МОЛЯРНАЯ) МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ НЕКОТОРЫХ ДИАМАГНЕТИКОВ И ПАРАМАГНЕТИКОВ (при норм. условиях)*
363
причём она очень сильно и сложным образом зависит от Н. Поэтому для ферромагнетиков вводят дифференциальную М. в. д=dJ/dH, к-рая характеризует зависимость J(H) в каждой точке кривой намагничивания. При H=0д ферромагнетиков не равна нулю, а имеет значение а, её наз. начальной М. в. С увеличением II М. в. растёт, достигая максимума д=макс на крутом участке кривой намагничивания (в области Баркгаузена эффекта), и затем вновь уменьшается.
Кривая зависимости дифференциальной магн. восприимчивости д ферромагнетиков от напряжённости намагничивающего поля Н.
При очень высоких значениях H М. в. ферромагнетиков (при темп-pax, не очень близких к точке Кюри) становится столь же незначительной, как и в обычных парамагнетиках (область парапроцесса). Вид кривой (H) (кривая Столетова, рис.) обусловлен сложным механизмом намагничивания ферромагнетиков. Типичные значения а и макс : Fe ~ 1100 и ~22000; Ni ~ ~12 и ~80, сплав пермаллой (50% Ni, 50% Fe) ~ 800 и ~8000 (в норм. условиях). Наряду с д вводят также
обратимую М. в. обр=limH0J,
причём существенно, что изменение поля должно происходить в сторону
его уменьшения от нач. значения (H<0). Всегда обр<я. Разность д и обр, достигающая максимума вблизи значений коэрцитивной силы, может быть принята за меру необратимости процессов намагничивания и размагничивания (меру гистерезиса). М. в., как правило, существенно зависит от темп-ры (исключения составляют большинство диамагнетиков и нек-рые парамагнетики — щелочные и отчасти щёлочноземельные и др. металлы, см. Парамагнетизм). М. в. парамагнетиков уменьшается с темп-рой, следуя Кюри закону или Кюри — Вейса закону. В ферромагнитных телах М. в. с ростом темп-ры увеличивается, достигая резкого максимума вблизи точки Кюри . М. в. антиферромагнетиков увеличивается с ростом темп-ры до точки Нееля, а затем падает по закону Кюри — Вейса. В перем. магн. полях (синусоидальных) М. в.— комплексная величина (см. Магнитная проницаемость). М. в. анизотропных тел (ферро- и ферримагнетиков) — тензор. М. в. ферромагнетиков зависит от частоты перем. магн. поля. Эту зависимость изучает магн. спектроскопия.
• Вонсовский С. В., Магнетизм, М., 1971; Б о з о р т Р., Ферромагнетизм, пер. с англ., М., 1956; Таблицы физических величин, М., 1976; Foex G., Constantes selectionnees, diamagnetisme et paramagnetisme, в кн.: Tables de constantes et donnees numeriques, t. 7, P., 1957.
С. В. Вонсовский.
МАГНИТНАЯ ВЯЗКОСТЬ. 1) М. в. ферромагнетиков (магнитное последействие) — задержка во времени изменения магн. характеристик ферромагнетиков (намагниченности, магн. проницаемости и др.) от изменений напряжённости внеш. магн. поля. Вследствие М. в. намагниченность образца устанавливается после изменения напряжённости поля через время от 10-9 с до десятков минут и даже часов (см. Релаксация).
При намагничивании ферромагнетиков в перем. поле наряду с потерями эл.-магн. энергии на вихревые токи и гистерезис возникают потери, связанные с М. в., к-рые в полях высокой частоты достигают значит. величины. М. в. в проводниках часто маскируется действием вихревых токов, «вытесняющих» магн. поток из ферромагнетиков. С целью уменьшения влияния вихревых токов при эксперим. исследовании М. в. (рис.) образцы материалов берутся в виде тонких проволок.
В зависимости от структуры ферромагнетика, условий его намагничивания, темп-ры М. в. может иметь разл. природу. При апериодич. изменении напряжённости поля в интервале значений, близких к коэрцитивной силе, где изменение намагниченности обычно обусловлено необратимым смещением границ между доменами (см. Намагничивание), вязкостный эффект в проводниках вызывается в осн. вихревыми микротоками (1-й тип М. в.). Эти токи возникают при изменениях поля, связанных с перемагничиваннем доменов. Время установления магн. состояния в этом случае пропорц. дифференциальной магнитной восприимчивости и для чистых ферромагн. металлов (Fe, Co, Ni) обратно пропорц. абс. темп-ре. Другой тип М. в. обусловлен примесями. Перемещающиеся вследствие изменения поля доменные границы задерживаются в местах концентрации атомов примеси,
Эксперим. кривая (а) спада намагниченности (в условных ед.) проволоки диаметром 0,5 мм из сплава Fe — Ni и вычисленная кривая (б) спада намагниченности того же образца при наличии только вихревых токов. Различие кривых а и б объясняется влиянием магн. вязкости.
и процесс намагничивания прекращается. Со временем, после диффузии атомов примеси в другие места, границы получают возможность двигаться дальше, намагничивание продолжается (2-й тип М. в.).
В высококоэрцитивных сплавах и ряде др. ферромагнетиков наблюдается т. н. сверхвязкость, для к-рой время магн. релаксации составляет неск. минут и более (3-й тип М. в.). Этот тип М. в. связан с локальными флуктуациями энергии, преим. тепловыми. Флуктуации вызывают перемагничивание доменов, к-рые при изменении поля получили недостаточно энергии, чтобы сразу перемагнититься. Диффузионные и флуктуац. процессы существенно зависят от темп-ры, поэтому М. в. 2-го и 3-го типов характеризуется сильной температурной зависимостью; с понижением темп-ры М. в. возрастает. 4-й тип М. в., характерный гл. обр. для ферритов, обусловлен диффузией эл-нов между ионами Fe2+ и Fe3+ . Этот процесс эквивалентен диффузии самих ионов, но осуществляется значительно легче, поэтому М. в. ферритов обычно невелика.
• Вонсовский С. В., Магнетизм, М., 1971; Kronmuller Н., Nachwirkung in Ferromagnetika, В.—Hdlb.—N. Y., 1968.
P. В. Телеснин.
2) М. в. в магн. гидродинамике — величина, характеризующая кинематич. и динамич. св-ва электропроводящих жидкостей и газов при их движении в магн. поле. В СГС системе единиц М. в. vm=c2/4, где — электрич. проводимость среды.
Достарыңызбен бөлісу: |