Двухплечевые М. с. позволяют исследовать процессы, при к-рых две ч-цы испускаются в одном акте, напр. двухчастичный распад. Ч-цы регистрируются в каждом из плеч М. с. (рис. 1). Измеряя их импульсы и угол между ними, можно восстановить эфф. массу объекта, при двухчастичном распаде к-рого они возникли. В детектор попадает только малая доля вторичных ч-ц, образующихся в мишени, Двухплечевые М. с. могут работать в очень интенсивных пучках (~1012 ч-ц за цикл работы ускорителя), что важно при исследовании редких процессов.
Рис. 2. Схема широкоапертурного автоматизированного магнитного спектрометра: 1 — магнит; 2 — трековые детекторы; 3 — сцинтилляционные годоскопич. счётчики; 4 — многоканальный черенковский газовый счётчик для идентификации вторичных ч-ц; 5 — ливневый спектрометр для регистрации эл-нов и -квантов; б — мюонный детектор в виде системы годоскопич. счётчиков и трековых детекторов, прослоённых Fe; 7 — мишень; 8 — дополнительные сцинтилляц. счётчики.
Именно с помощью таких М. с. открыты J/-частица с массой 3,1 ГэВ и ипсилон-частица с массой 9,5 ГэВ. Обе ч-цы выделены по их двухлептонным распадам (J/е+е- и +-). Двухплечевые М. с. регистрируют события только в очень узком кинематич. диапазоне (напр., регистрируется только J/ и ипсилон-частицы, почти покоящиеся в системе центра масс). Кроме того, они обладают малой светосилой и непригодны для анализа сложных многочастичных процессов.
Широкоапертурные М. с. (рис. 2) позволяют измерять траектории и импульсы нескольких вторичных ч-ц, образующихся при вз-ствии первич-
378
ных ч-ц высоких энергий в мишени установки, идентифицировать вторичные ч-цы, определять эфф. массы их разл. комбинаций. Широкоапертурные М. с. обладают большой светосилой, однако значит. часть первичного пучка, как правило, проходит через всю установку, и поэтому они обычно работают при интенсивности, не превышающей неск, миллионов ч-ц за один цикл работы ускорителя. Они могут также настраиваться на выделение двухчастичных распадов ч-ц определ. массы, напр. нейтральных К-мезонов в опытах по изучению нарушения СР-инвариантности в К° 2-распадах.
Спектрометры недостающей массы применяются при исследовании короткоживущих ч-ц (резонансов).
Рис. 3. Принцип действия спектрометра недостающих масс; вверху схема спектрометра (а), внизу спектры недостающих масс — гладкий (б) и с максимумами (в).
Пусть происходит реакция -+ р р+Х- (X — все вторичные ч-цы). Если измерять импульс и угол вылета протона отдачи р с помощью протонного спектрометра (рис. 3,a), то можно определить эфф. массу Мх системы Х- (т. н. недостающую массу). Если в реакции всегда образуется неск. независимых вторичных ч-ц, спектр недостающих масс гладкий. Однако если реакция идёт в два этапа — сначала совместно с протоном отдачи образуются мезонные резонансы с массами M1 или М2 или М3 и соответствующими ширинами Г1, Г2, Г3, а затем резонансы распадаются на вторичные ч-цы, то спектр недостающих масс содержит максимумы, свидетельствующие о существовании резонансов.
Спектрометры для экспериментов со встречными пучками, как правило, содержат большие сверхпроводящие соленоиды, окружающие область, где взаимодействуют два сталкивающихся пучка ч-ц. Такие магн. системы перекрывают телесный угол, близкий к 4л. Встречные пучки проходят по оси соленоида, а детекторы ч-ц (трековые детекторы, сцинтилляц. счётчики, ливневые детекторы и т. д.) располагаются концентрически как внутри соленоида, так и вне его. С помощью спектрометров такого типа открыты -
и '-частицы, очарованные мезоны и тяжёлые лептоны.
• Методы измерения основных величин ядерной физики. Сост.-ред. Люк К. Л. Юан и By Цзянь-сюн, пер. с англ., М., 1964; Элементарные частицы, М., 1978, в. 2, 1980, в. 3 (Материалы школ физики ИТЭФ).
Л. Г. Ландсберг.
МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР (МГД-генератор), установка для непосредств. преобразования тепловой энергии в электрическую. Основан на явлении эл.-магн. индукции, т. е. возникновении тока в проводнике, пересекающем магн. силовые линии; в кач-ве движущегося в магн. поле проводника используется плазма или проводящая жидкость (электролиты и жидкие металлы) .
На возможность использования проводящих жидкостей, движущихся в магн. поле, для генерации электрич. токов указал ещё англ. физик М. Фарадей в 1831. Однако предпринятые им же попытки экспериментально проверить эту идею были безуспешны. Осн. принципы устройства современных М. г. были сформулированы в 1907 — 22, однако практич. реализация их оказалась возможной только в кон. 50-х гг. в связи с развитием магнитной гидродинамики, физики плазмы и т. д.
М. г. состоит (рис. 1) из генератора (нагревателя, источника) рабочего тела, в к-ром рабочее тело нагревается до необходимой темп-ры (тв. топливо переходит в газ и ионизуется) и разгоняется до требуемых скоростей; МГД-канала, в к-ром движется рабочее тело (плазма или проводящая жидкость) и происходит отвод генерируемой электроэнергии контактным (с помощью электродов) или индукционным (вторичные обмотки) способами; магн. системы, в магн. поле " к-рой происходит пондеромоторное торможение рабочего тела.
Рис. 1. Схема плазменного МГД-генератора: 1 — генератор плазмы; г — сопло; 3 — МГД-канал; 4 — электроды с последовательно включённой нагрузкой; 5 — магн. система, создающая тормозящее магн. поле; Rн — нагрузка.
По типу используемого рабочего тела М. г. подразделяются на плазменные и жидкометаллические. В плазменных М. г. может использоваться равновесная или неравновесная плазма.
Системы с М. г. могут работать по открытому и замкнутому циклам. В первом случае использованные газы выбрасываются в атмосферу. В М. г. замкнутого цикла рабочее тело, пройдя М. г., возвращается в МГД-канал через компрессор или насос.
Как и в любом генераторе, основанном на принципе эл.-магн. индукции, в проводящем потоке (с электропроводностью а), движущемся в МГД-канале М. г. со скоростью v поперёк магн. поля В, возникает индукц. поле напряжённостью E=vXB. Под действием этого поля в объёме потока и во внеш. цепи возбуждается электрич. ток.
Вз-ствие генерируемого тока с магн. полем приводит к появлению тормозящей пондеромоторной силы, работа к-рой на длине канала М. г. определяет уд. мощность и эффективность М. г. Она тратится на работу во внеш. цепи, на джоулев нагрев рабочего тела и на работу, связанную с токами утечки.
Мощность М. г. N~v2B2. Для жидкометаллич. М. г. существенной проблемой при получении больших мощностей явл. разгон рабочего тела до высоких скоростей. В совр. схемах разгона парогазовой смеси с конденсацией перед МГД-каналом происходят большие потери кинетич. энергии, а при работе с гетерогенным парогазовым рабочим телом — потери электропроводности. Эти потери и ряд др. эффектов ограничивают кпд жидкометаллич. М. г. величинами ~3— 6%; агрегатные мощности М. г.— ок. 0,5—1,0 МВт. Значительно более высокие показатели имеют плазменные М. г. Во-первых, в них рабочее тело можно разгонять до больших скоростей (~2000 —2500 м/с), во-вторых, введение в газы небольших кол-в легко ионизующихся добавок (напр., паров щелочных металлов К, Cs) позволило снизить темп-ру ионизации и получить приемлемые электропроводности плазмы уже при темп-рах 2300—3000 К и атм. давлениях. Использование перегрева электронной компоненты плазмы относительно ионной и ат. компонент также значительно увеличивает электропроводность такой неравновесной плазмы. При типичных значениях магн. индукции В ~ 3Т можно получать кпд плазменных М. г. до 20%, а мощность с ед. объёма рабочего тела ~103 МВт/м3.
При использовании плазмы в кач-ве рабочего тела нужно учитывать особенности работы М. г., связанные с плазменными эффектами и сжимаемостью газа. Так, в сильных магн. полях или в разреж. газе, когда частота соударений эл-нов уменьшается и становится сравнимой с циклотронной частотой вращения эл-нов, они успевают за время между соударениями пройти заметную дугу по ларморовской окружности. Благодаря этому направление тока в плазме не совпадает с направлением напряжённости электрич. поля (Холла эффект).
379
Это приводит к возникновению дополнит. электрич. поля, т. н. поля Холла, направленного навстречу потоку газа. В результате а уменьшается в направлении индуцированного поля и становится анизотропной. Для уменьшения вредных последствий эффекта Холла предпочтительны режимы работы с давлениями, близкими атмосферным. Кроме того, можно разделить электроды на секции (чтобы уменьшить циркуляцию тока вдоль канала), причём каждая пара электродов должна иметь свою нагрузку
Рис. 2. Схемы соединения электродов в МГД-генераторах: a — линейный фарадеевский генератор с секционированными электродами; б — линейный холловский генератор; в — сериесный генератор с диагональным соединением электродов.
(рис. 2, а), что усложняет конструкцию М. г. Если же в идеально секционированном канале электроды коротко замкнуты (рис. 2, 6, в), то поле Холла значительно больше индукционного и этот эффект используется для получения высоких (10—20 кВ) напряжений.
Сжимаемость газа приводит к появлению градиентов давления и темп-ры вдоль канала. Эти эффекты частично компенсируют расширением проточной части канала. Трение газа о стенки канала приводит к образованию холодных пограничных слоев, где теряется часть генерируемого напряжения; в результате трения может также происходить зажигание дуг, разрушающих электроды. При сильных пондеромоторных торможениях рабочего тела может произойти отрыв пограничного слоя и в потоке плазмы возникнут резкие возмущения, поток расслаивается, резко уменьшается индуцированное поле в выходных зонах, генерация срывается. Отсос пограничного слоя частично компенсирует этот эффект.
В канале М. г. может возникать также ряд плазменных неустойчивостей, обусловленных локальными перегревами, неоднородностью ионизации и т. п.
Отсутствие движущихся деталей (осн. преимущество М. г.) и принципиально высокая рабочая темп-ра позволяют создавать М. г. с высокими кпд и большими агрегатными мощностями. В комбинированных ТЭС можно применять М. г. как высокотемпературные ступени перед обычными машинными генераторами, что должно повысить кпд станции в целом на 10—15%. Быстрота выхода на режим (~1 с) позволяет на базе М. г. создавать пиковые и аварийные электростанции, а также мощные импульсные МГД-установки. Используя принцип самовозбуждения магн. системы, можно создавать автономные импульсные МГД-установки. Малое количество вредных примесей в выхлопных газах М. г., работающих на природных ископаемых топливах, обеспечивает лучшие условия защиты окружающей среды от теплового и химического загрязнений. Созданы экспериментальные МГД-генераторы, генерирующие до 10—20 МВт в течение сотен часов. В народном хозяйстве используются мощные импульсные М. г. открытого цикла, работающие на продуктах сгорания специальных твёрдых топлив. Разработаны МГД-установки для прогнозирования землетрясений методом периодических глубинных зондирований земной коры, для геофиз. нефтепоисковых работ и т. д.
Исследования и разработки в области М. г. ведутся в СССР, США, Японии, Индии и др. странах.
• Р о з а Р., Магнитогидродинамическое преобразование энергии, пер. с англ., М., 1970; Магнитогидродинамическое преобразование энергии, М., 1979.
Ю. М. Волков.
МАГНИТОДВИЖУЩАЯ СИЛА (намагничивающая сила), величина, характеризующая магн. действие электрич. тока. Вводится для магнитных цепей по аналогии с электродвижущей силой в электрич. цепях. М. с. F равна циркуляции вектора напряжённости магн. поля Н по замкнутому контуру L, охватывающему электрич. токи, к-рые создают это магн.
поле:
(в ед. СИ). Здесь hl — проекция Н на направление элемента контура интегрирования dl, n — число проводников (витков) с током Ii, охватываемых контуром. Единица М. с. в Международной системе единиц (СИ) — ампер (или ампер-виток), в СГС системе единиц (симметричной) — еильберт.
МАГНИТОДИЭЛЕКТРИКИ, магнитные материалы, представляющие собой конгломерат магн. порошка (из ферро- и ферримагнетиков) и связки — диэлектрика (напр., бакелита, полистирола, резины); в макрообъёмах обладают высоким электрич. сопротивлением, зависящим от кол-ва и типа связки. М. могут быть как магнитно-твёрдыми материалами, так и магнитно-мягкими материалами. Магнитно-мягкие М. получают в осн. из тонких порошков карбонильного железа, молибденового пермаллоя и алсифера; их применяют для
изготовления сердечников катушек индуктивности, фильтров, дросселей и др. радиотехн. устройств, работающих при частотах 104—108 Гц. Магнитно-твёрдые М. изготовляют на основе порошков из сплавов ални (Fe — Ni — Al — Cu), алнико (Fe — Ni — Al — Co), ферритов. Коэрцитивная сила этих М. ниже на неск. десятков %, а остаточная индукция меньше почти в два раза, чем у массивных материалов. М. применяются в приборостроении (пост. магниты, эластичные герметизаторы для разъёмных соединений и др.).
• Ферриты и магнитодиэлектрики. Справочник, М., 1968; Толмасский И. С., Металлы и сплавы для магнитных сердечников, М., 1971.
МАГНИТОЗВУКОВЫЕ ВОЛНЫ, низкочастотные (с частотой ниже ионной циклотронной) продольные эл.-магн. колебания, распространяющиеся в замагниченной плазме поперёк направления внеш. магн. поля. В М. в. в-во перемещается вдоль направления распространения. Механизм явления аналогичен обычному звуку и заключается в сжатии и расширении в-ва вместе с вмороженным в него магн. полем; поэтому в определении скорости М. в. надо учитывать не только газовое, но и магн. давление. Скорость распространения М. в. равна скорости альфвеноеских волн. См. также Плазма.
МАГНИТОМЕТР, прибор для измерения хар-к магнитного поля и магн. св-в физ. объектов. М. различают по назначению, принципу действия и условиям эксплуатации.
При классификации по назначению выделяют две группы М. К первой, наиболее разветвлённой, относят приборы для измерения осн. хар-к магн. поля: напряжённости Н (в А/м или Э), индукции В (в Тл или Гс), магн. потока Ф (в Вб или Мкс); ко второй — приборы для измерения магн. св-в материалов и горных пород.
Помимо обобщающего наименования «М.», традиционного для 1-й группы приборов, нек-рые из них наз. в соответствии с наименованием единицы измеряемой величины (преим. Международной системы единиц), напр. тесламетр (реже гауссметр), веберметр.
К осн. хар-кам магн. поля, к-рые измеряют М. 1-й группы, относятся: абс. значение (модуль) вектора поля (Н или В), абс. значения составляющих (проекций) вектора поля в геомагнитной или др. системе координат (см. Земной магнетизм), направление вектора поля или его проекций (приборы, компас, буссоль, магн. теодолит, инклинатор, деклинатор, векторный М.), относит. изменения поля во времени (магн. вариометры) и пр-ве (градиентометры или дифференциальные М.).
М. 2-й группы измеряют след магн. св-ва горных пород и магн материалов: магнитный момент M (А•м2), намагниченность J (А/м), маг-
380
нитную восприимчивость (каппа-метр), магн. проницаемость (мюметр), зависимости J(H) и В(Н) (см. Намагничивания кривые), коэрцитивную силу Hс, потери на гистерезис и т. п.
По принципу действия М. подразделяют на неск. типов. М а г н и т о с т а т и ч е с к и е М.— приборы, основанные на вз-ствии измеряемого магн. ноля Hизм с постоянным (индикаторным) магнитом, имеющим магн. момент М. В поле Низм на магнит действует механич. момент I=[МНизм]. Момент в М. разл. конструкции уравновешивается: а) моментом кручения кварцевой нити (действующие по этому принципу кварцевые М. и универс. магн. вариометры на кварцевой растяжке обладают чувствительностью G ~ 1 нТл); б) моментом силы тяжести (магнитные весы с G~10 —15 нТл), в) моментом, действующим на вспомогательный эталонный магнит, установленный в определ. положении (оси индикаторного и вспомогат. магнитов в положении равновесия перпендикулярны). В последнем случае, определяя дополнительно период колебания вспомогат. магнита в поле .Низм, можно измерить абс. величину Низм (абс. метод Гаусса).
Рис. 1. Схема кварцевого магнитометра для измерения вертикальной составляющей (Z) напряжённости геомагн. поля: 1 — оптич. система зрит. трубы; 2 — оборотная призма для совмещения шкалы 9 с полем зрения; 3 — магниточувствит. система (пост. магнит на кварцевой растяжке 5); 4 — зеркало; 6 — магнит для частичной компенсации геомагн. поля (изменения диапазона прибора); 7 — кварцевая рамка; 8 — измерит. магнит (по углу его поворота определяют Z); 10 — система освещения шкалы.
М. этого типа имеют, как правило, только одну плоскость вращения пост. магнита (вертикальную или горизонтальную) и применяются для измерения соответствующей компоненты поля — обычно компоненты X, Y или Z, напряжённости геомагн. поля (рис. 1), а также для измерения градиента поля и абс. величины Н.
Модификации магнитостатич. М. с двумя параллельными магнитами на одной нити подвеса (астатич. системы) применяются также для измерения магн. св-в земных пород и магн. материалов.
Электрические М. основаны на сравнении Низм с полем эталонной катушки Н=ki, где k — постоянная катушки, определяемая из её геом. и конструктивных параметров, i — измеряемый ток. Электрич. М. состоят из компаратора для измерения размеров катушки и её обмотки,
теодолита для точной ориентации оси катушки по направлению измеряемой компоненты поля, потенциометрич. системы для измерения тока i и чувствит. датчика — индикатора равенства полей. Чувствительность М. этого типа ~ 1 мкЭ, осн. область их применения — измерение горизонт. и вертик. составляющих геомагн. поля. Индукционные М. основаны на явлении электромагнитной индукции — возникновении эдс в измерит. катушке при изменении проходящего сквозь её контур магн. потока Ф. Изменение потока Ф в катушке может быть связано: а) с изменением величины или направления измеряемого поля во времени (приборы: индукц. вариометры, флюксметры). Простейший флюксметр (веберметр) представляет собой баллистический гальванометр, действующий в сильно переуспокоенном режиме (G ~ 10-4 Вб/дел); применяются магнитоэлектрич. веберметры с G ~10-6 Вб/дел, фотоэлектрич. веберметры с G ~ 10-8 Вб/дел и др.; б) с периодич. изменением положения (вращением, колебанием) измерит. катушки в измеряемом поле (рис. 2). Простейшие тесламетры с катушкой на валу синхронного двигателя обладают G~10-4 Тл.
Рис. 2. Блок-схема и конструкция преобразователя вибрац. тесламетра: 1 — измерит. катушка, укреплённая на торце пьезокристалла 2 (вибратора); 3 — зажим для крепления пьезокриоталла; 4 — усилитель сигнала; сигнал детектируется и измеряется прибором 5 магнитоэлектрич. системы; в — генератор эл.-магн. колебаний; 7 — источник питания.
У наиболее чувствительных вибрационных М. G ~ 0,1 — 1 нТл; в) с изменением магнитного сопротивления измерит. катушки, что достигается периодич. изменением магн. проницаемости пермаллоевого сердечника (он периодически намагничивается до насыщения вспомогательным перем. полем возбуждения). Действующие по этому принципу феррозондовые М. имеют G ~ 0,2 — 1 нТл (см. Феррозонд). Индукционные М. применяются для измерения магн. полей Земли и др. планет, техн. полей, в магнитобиологии и т. д.
Квантовые М.— приборы, основанные на ядерном магнитном резонансе, электронном парамагнитном.
резонансе, свободной прецессии магн. моментов ядер или эл-нов во внеш. магн. поле, Мейснера эффекте, Джозефсона эффекте и др. эффектах. Для наблюдения зависимости частоты прецессии магн. моментов микрочастиц от Hизм (=Hизм, где — магнитомеханическое отношение) необходимо создать макроскопич. магн. момент ансамбля микрочастиц — ядер или эл-нов (см. в ст. Сверхпроводящий магнитометр). Квант. М. применяются для измерения напряжённости слабых магн. полей (в т. ч. геомагн. и магн. поля в косм. пр-ве), в геологоразведке, в магнетохимии, в биофизике (G до 10-5—10-7 нТл). Значительно меньшую чувствительность (G~10-5 Тл) имеют квант. М. для измерения сильных магн. полей.
Гальваномагнитные М. основаны на явлении искривления траектории электрич. зарядов, движущихся в магн. поле Hизм, под действием Лоренца силы (см. Гальваномагнитные явления). К этой группе М. относятся: М. на Холла эффекте (возникновении между гранями проводящей пластинки разности потенциалов, пропорциональной протекающему току и Hизм), М. на эффекте Гаусса (изменении сопротивления проводника в поперечном магн. поле Hизм), М. на явлении падения анодного тока в магнетронах и электроннолучевых трубках (вызванного искривлением траектории эл-нов в магн. поле) и др.
Рис. 3. Принципиальная схема тесламетра, основанного на эффекте Холла (компенсац. типа): e1 и E2 — источники пост. тока; r1 и r2 — резисторы; G — гальванометр; тА — миллиамперметр; ПХ — преобразователь Холла (ПП пластинка). Эдс Холла компенсируется падением напряжения на части калиброванного сопротивления r2, через к-рое протекает пост. ток.
На эффекте Холла основано действие различного рода тесламетров для измерения пост., перем. и импульсных магн. полей (с G ~10-4—10-5 Тл, рис. 3); градиентометров и приборов для исследования магн. с-в материалов. Чувствительность G тесламетров, работающих на основе эффекта Гаусса, достигает 10 мкВ/Тл; у электронно-вакуумных М. G ~ 30 нТл.
Существуют также М. экспериментального, прикладного и демонстрац. хар-ра, работа к-рых основана на изменении длины намагниченного стержня (см. Магнитострикция), на вращении плоскости поляризации света (см. Магнитооптика, Фарадея эф-
381
фект, Керра эффект) и т. д. М. каждого из указанных типов дополнительно различаются по осн. показателям: диапазону измерений, чувствительности, погрешности, скорости и способу отсчёта и т. д., а также по условиям эксплуатации. В частности, разработаны многочисл. типы М. для измерения магн. поля в условиях морской и аэромагн. съёмки, в околоземном и межпланетном косм. пр-ве.
• Яновский Б. М., Земной магнетизм, 2 изд., т. 2, Л., 1963; Ч е ч у р и н а Е. Н., Приборы для измерения магнитных величин, М., 1969; Померанцев Н. М., Рыжков В. М., Скроцкий Г. В., Физические основы квантовой магнитометрии, М., 1972; М и х л и н Б. 3., С е л е з н е в В. П., Селезнев А. В., Геомагнитная навигация, М., 1976.
МАГНИТОМЕХАНИЧЕСКИЕ ЯВЛЕНИЯ (гиромагнитные явления),
группа явлений, обусловленных взаимосвязью магн. и механич. моментов микрочастиц — носителей магнетизма. Любая микрочастица, обладающая определ. моментом количества движения (эл-н, протон, нейтрон, ат. ядро, атом), имеет также и определ. магнитный момент. Благодаря этому увеличение суммарного момента кол-ва движения микрочастиц, образующих физ. тело (образец), приводит к возникновению у образца дополнит. магн. момента; наоборот, при намагничивании образец приобретает дополнит. механич. момент.
Увеличение магн. момента (намагниченности) в ферромагн. образцах при их вращении было обнаружено в 1909 амер. физиком С. Барнеттом (см. Барнетта эффект). Обратный эффект — поворот свободно подвешенного ферромагн. образца при его намагничивании во внеш. магн. поле открыт в 1915 в опытах А. Эйнштейна и В. де Хааза (см. Эйнштейна — де Хааза эффект).
М. я. позволяют определить отношение магн. момента атома к его полному механич. моменту (гиромагнитное, или магнитомеханическое отношение) и сделать заключение о природе носителей магнетизма в разл. в-вах. Так было установлено, что в переходных Зd-металлах (Fe, Co, Ni) магн. момент обусловлен спиновыми моментами эл-нов (см. Спин). В др. в-вах (напр., редкозем. металлах) магн. момент создаётся как спиновыми, так и орбитальными моментами эл-нов.
В связи с созданием новых, в первую очередь резонансных, методов исследования магнетизма (см. Магнитный резонанс) интерес к М. я. уменьшился.
• Вонсовский С. В., Магнетизм., М., 1971.
Р. З. Левитин.
МАГНИТОМЕХАНИЧЕСКОЕ ОТНОШЕНИЕ (гиромагнитное отношение),
отношение магнитного момента элем. ч-ц (и состоящих из них систем — атомов, молекул, ат. ядер и т. д.) к их моменту кол-ва движения (механич. моменту). Для каждой элем. ч-цы, обладающей отличным от нуля механич. моментом — спином, М. о. имеет определ. значение. Для разл. состояний ат. системы значения М. о. определяются по ф-ле: =g0, где 0 — единица М. о., g — Ланде множитель. В этом случае за единицу М. о. принимают его величину для орбит. движения эл-на в атоме: —е/2mес, где е — заряд эл-на, me — масса эл-на. Для ядер за единицу М. о. принимают аналогичную величину для протона: е!2mрС (mр — масса протона).
Величина М. о. определяет действие магн. поля на систему, обладающую магн. моментом. Согласно классич. теории, магн. момент во внеш. магн. поле напряжённостью Н совершает прецессию — равномерно вращается вокруг направления Н, сохраняя определ. угол наклона, с угл. скоростью =-Н. В частном случае, когда магн. момент обусловлен орбит. движением эл-нов, имеет место Лармора прецессия. Согласно квант. теории, масштаб магн. расщепления уровней энергии в магн. поле (см. Зеемана эффект) определяется М. о., он равен: ћН= g0nћH.
М. А. Ельяшевич.
МАГНИТООПТИКА (магнетооптика),
раздел физики, изучающий изменения оптич. свойств в-ва под действием магн. поля. Подавляющее большинство магнитооптич. явлений связано с расщеплением уровней энергии атома (снятием вырождения). Непосредственно это расщепление проявляется в Зеемана эффекте. Др. магнитооптич. эффекты по существу явл. следствием эффекта Зеемана и связаны с особенностями поляризац. хар-к зеемановских оптич. переходов и с закономерностями распространения поляризов. света в среде, обладающей дисперсией. Спецификой магнитооптич. эффектов является то, что в магн. поле, помимо обычной линейной оптической анизотропии, появляющейся в среде под действием электрич. поля или деформаций, возникает циркулярная анизотропия, связанная с неэквивалентностью двух направлений вращения в плоскости, перпендикулярной полю. Это важное обстоятельство явл. следствием аксиальности магн. поля.
Наиболее просто осн. явления М. можно классифицировать феноменологически в зависимости от направления магн. поля. При этом рассматриваются два осн. случая: 1) волн. вектор светового излучения k параллелен магн. полю Н и 2) волн. вектор света перпендикулярен магн. полю. Явление Зеемана наблюдается в обоих случаях, причём различие поляризац. хар-к компонент зеемановского расщепления влечёт за собой различный хар-р индуцированной магн. полем анизотропии в этих случаях. Так, при распространении монохроматич. света вдоль поля (при продольном эффекте Зеемана) его право- и левоциркулярно поляризованные составляющие поглощаются по-разному (т. н. магнитный циркулярный дихроизм), а при распространении света поперёк поля (поперечном эффекте Зеемана) имеет место магнитный линейный дихроизм, т. с. разное поглощение составляющих, линейно поляризованных параллельно и перпендикулярно магн. полю (см. Поляризация света). Эти поляризац. эффекты имеют сложную зависимость от длины волны излучения (сложный спектр. ход), знание к-рой позволяет определить величину и хар-р зеемановского расщепления в тех случаях, когда оно много меньше ширины спектральных линий. (Аналогичные эффекты могут наблюдаться и в люминесценции.)
Расщепление спектр. линий влечёт за собой соответствующее расщепление дисперс. кривых, характеризующих зависимость показателя преломления среды от длины волны излучения (см. Дисперсия света, Преломление света). В результате при продольном (по полю) распространении показатели преломления для света с правой и левой круговыми поляризациями становятся различными (магнитное циркулярное двойное лучепреломление), а линейно поляризованный монохроматич. свет, проходя через среду, испытывает вращение плоскости поляризации. Последнее явление носит назв. Фарадея эффекта. В области линии поглощения фарадеевское вращение проявляет характерную немонотонную зависимость от длины волны — эффект М а к а л у з о — К о р б и н о. При поперечном относительно магн. поля распространении света различие показателей преломления для линейных поляризаций приводит к линейному магнитному двойному лучепреломлению, известному как Коттона — Мутона эффект (или эффект Фохта). Изучение и использование всех этих эффектов входит в круг проблем совр. М.
Один из важных разделов совр. М.— исследование влияния слабых магн. полей на излучения газов (в т. ч. и газовых лазеров). При этом в эксперименте регистрируется изменение пространств. и поляризац. хар-к излучения под действием магн. поля (Ханле эффект).
Оптич. анизотропия среды в магн. поле проявляется также и при отражении света от её поверхности. При намагничивании среды происходит изменение поляризации отражённого света, хар-р и степень к-рой зависят от взаимного расположения поверхности, плоскости поляризации падающего света и вектора намагниченности. Этот эффект наблюдается в первую очередь в ферромагнетиках и носит назв. магнитооптического Керра эффекта.
М. тв. тела интенсивно развивалась в 60—70-х гг. 20 в. В особенности это
382
относится к М. полупроводников и таких магнитоупорядоченных кристаллов, как ферриты и антиферромагнетики.
Одно из осн. магнитооптич. явлений в ПП состоит в появлении (при помещении их в магн. поле) дискр. спектра поглощения оптич. излучения зa краем сплошного поглощения, соответствующего оптич. переходу между зоной проводимости и валентной зоной (см. Полупроводники, Твёрдое пело). Эти т. н. осцилляции коэфф. поглощения, или осцилляции магнитопоглощения, обусловлены специфич. «расщеплением» в магн. поле указанных зон на системы подзон — подзон Ландау. Оптич. переходы между подзонами ответственны за осцилляции поглощения. Возникновение подзон Ландау вызвано тем, что эл-ны проводимости и дырки совершают в магн. поле орбит. движение в плоскости, перпендикулярной полю. Энергия такого движения может изменяться лишь скачкообразно (дискретно) — отсюда дискретность оптич. переходов. Эффект осцилляции магнитопоглощения широко используется для определения параметров зонной структуры ПП. С ним связаны п т. н. междузонные эффекты Фарадея и Фохта в ПП.
Подзоны Ландау расщепляются в магн. поле вследствие того, что эл-н обладает собственным моментом кол-ва движения — спином. При определ. условиях наблюдается вынужденное рассеяние света на эл-нах в ПП с переворотом спина относительно магн. поля. При таком процессе энергия рассеиваемого фотона изменяется на величину спинового расщепления подзоны, к-рое для нек-рых ПП весьма велико. На этом эффекте основано плавное изменение частоты излучения мощных лазеров и создан светосильный ИК спектрометр сверхвысокого разрешения (см. Инфракрасная спектроскопия),
Большой раздел М. полупроводников составляет изучение зеемановского расщепления уровней энергии мелких водородоподобных примесей и экситонов (см. также Квазичастицы). Наблюдение магнитопоглощения и отражения ИК излучения в узкозонных ПП позволяет исследовать коллективные колебания электронной плазмы (см. Плазма твёрдых тел) и её вз-ствие с фононами.
В прозрачных ферритах и антиферромагнетиках магнитооптич. методы применяют для изучения спектра спиновых волн, экситонов, примесных уровней энергии и пр. В отличие от диамагнетиков и парамагнетиков, во вз-ствии света с магнитоупорядоченными средами гл. роль играют не внеш. поля, а внутр. магн. поля этих сред (их напряжённости достигают 105—106 Э), к-рые определяют спонтанную намагниченность (подрешёток или кристалла в целом) и её ориентацию в кристалле. Магнитооптич.
св-ва прозрачных ферритов и антиферромагнетиков могут быть использованы в системах управления лазерным лучом (напр., для создания модуляторов света, см. Модуляция света) и для оптич. записи и считывания информации, особенно в ЭВМ.
Создание лазеров привело к обнаружению новых магнитооптич. эффектов, проявляющихся при больших интенсивностях светового потока. Показано, в частности, что поляризованный по кругу свет, проходя через прозрачную среду, действует как эфф. магн. поле и вызывает появление намагниченности среды (т. н. обратный эффект Фарадея).
Магнитооптич. методы используются при исследованиях квант. состояний, ответственных за оптич. переходы, спектров электронного парамагн. резонанса в ат. и конденсиров. средах, физ.-хим. структуры в-ва, электронной структуры металлов и ПП, фазовых переходов и пр.
• Б о р н М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; В о н с о в с к и й С. В., Магнетизм, М, 1971; З а п а с с к и й В. С., Ф е о ф и л о в П. П., Развитие поляризационной магнитооптики парамагнитных кристаллов, «УФН», 1975, т. 116, в. 1, с. 41: Писарев Р. В., Магнитное упорядочение и оптические явления в кристаллах, в кн.: Физика магнитных диэлектриков, Л., 1974.
В. С. Запасский, Б. П. Захарченя.
МАГНИТОРЕЗИСТИВНЫЙ ЭФФЕКТ, изменение электрич. сопротивления тв. проводников под действием внеш. магн. поля Н. Различают поперечный М. э., при к-ром электрич. ток I течёт перпендикулярно магн. полю Н, и продольный М. э. (I||Н). Причина М. э.— искривление траекторий носителей тока в магн. поле (см. Гальваномагнитные явления). Относительное поперечное изменение сопротивления (/) при комнатных темп-pax мало: у хороших металлов (/) ~ 10-4 при Н ~ 104 Э. Исключение — Bi, у к-рого (/)2 при H=3•104 Э. Это позволяет использовать его для измерения магн. поля (см. Магнитометр). У полупроводников (/) ~10-2—10 и существенно зависит от концентрации примесей и от темп-ры, напр. у достаточно чистого Ge (/)~3 при T=90 К и H=1,8•104 Э.
Понижение темп-ры и увеличение Н приводит к увеличению (/). П. Л. Капица в 1927, используя сильные магн. поля (в неск. сотен тысяч Э) при темп-ре жидкого азота, обнаружил у большого числа металлов и в широком интервале полей линейную зависимость (/) от Н (з а к о н К а п и ц ы). В слабых полях (/) пропорц. Н2. Коэфф. пропорциональности обычно положителен, т. е. сопротивление растёт с увеличением магн. поля; исключение составляет ферромагнетики (см. Кондо эффект). Т. к. сопротивление чувствительно к кол-ву примесей и дефектов в крист. решётке, а также к темп-ре, то измерения (на определ. образце, при определ. темп-ре) могут приводить к разным зависимостям от Н. Эксперим. данные для металлов удобно описывать, выразив (/) в виде ф-ции от Hэф=H(300/),. где 300— сопротивление данного металла при комнатной темп-ре (300 К) и H=0, а — при темп-ре эксперимента и при H=0. При этом разл. данные, относящиеся к одному металлу, укладываются на одну прямую (п р а в и л о К о л е р а). Резкая анизотропия сопротивления в сильных магн. полях (у Au, Ag, Cu, Sn и др. небольшое изменение ориентации магн. поля может привести к изменению иногда в 1000 раз) означает анизотропию Ферми поверхности (небольшая анизотропия соответствует изотроп. поверхности Ферми). Если с ростом Н для всех направлений не стремится к «насыщению» — не перестаёт расти (Bi, As и др.), то эл-ны и дырки содержатся в проводнике в равном кол-ве. Стремление к насыщению означает преобладание носителей одного типа.
М. э. используется для исследования электронного энергетич. спектра и механизма рассеяния носителей тока в проводниках, а также для измерения магн. полей.
• См. лит. при ст. Гальваномагнитные явления.
Э. М. Эпштейн.
МАГНИТОРЕЗОНАНСНЫЙ МАСС-СПЕКТРОМЕТР, устройство, в к-ром для разделения ионов по отношению массы к заряду используется движение «узкого» пакета ионов, сформированного в модуляторе, в однородном магн. поле. Ионы, циклотронная частота к-рых совпадает с частотой перем. напряжения, приложенного к электродам модулятора, дополнительно ускоряются и после неск. оборотов по расширяющимся траекториям попадают на коллектор. М. м.-с. используется для прецизионных измерений масс ионов, а также для изотопного анализа. См. Масс-спектрометр.
МАГНИТОСТАТИКА, раздел теории эл.-магн. поля, в к-ром изучаются св-ва стационарного магнитного поля (поля пост. электрич. токов или поля пост. магнитов). Для расчёта этих полей часто пользуются понятием магнитного заряда, позволяющим применять в М. ф-лы, аналогичные ф-лам электростатики. Формально это возможно благодаря теореме эквивалентности поля магн. зарядов и поля пост. электрич. токов (см. Ампера теорема), хотя в природе свободных магн. зарядов не существует (см. Магнитный монополь).
• Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976.
МАГНИТОСТРИКЦИОННЫЕ МАТЕРИАЛЫ, ферромагнитные металлы и сплавы (см. Ферромагнетик), а также ферриты, обладающие хорошо выраженными магнитострикц. св-вами
383
ХАРАКТЕРИСТИКИ МАГНИТОСТРИКЦИОННЫХ МАТЕРИАЛОВ
Примечание: k, соответствуют Н0 опт; для а приведены макс. значения.
(см. Магнитострикция) и применяемые для изготовления магнитострикционных преобразователей эл.-магн. энергии в механич. и обратно (излучатели акустич. колебаний, датчики давления, фильтры и др. приборы). Осн. хар-ки М. м. (см. табл.): коэфф. магнитомеханич. связи k, квадрат к-рого равен отношению преобразованной энергии (механич. или магнитной) к подводимой (соответственно магнитной или механической) без учёта потерь; динамические магнитострикц. постоянная а, определяющая чувствительность преобразователя в режиме излучения, и относительная магнитная проницаемость ; скорость звука с; магнитострикция насыщения s, определяющая предельную интенсивность звука, излучаемого преобразователем; коэрцитивная сила Нс и уд. электрич. сопротивление , характеризующие потери энергии соотв. на гистерезис и на вихревые токи. Магнитострикц. преобразователи работают, как правило, при пост. поле подмагничивания Н0, соответствующем максимуму k (H0 опт) или несколько большем.
Металлич. М. м. изготавливают в виде лент толщиной 0,1—0,3 мм, из к-рых штампуют или навивают сердечники, ферриты-шпинели применяют в виде монолитных сердечников, ферриты-гранаты — в виде монокристаллов.
И. П. Голямина.
МАГНИТОСТРИКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ, электромеханический или электроакустический преобразователь, действие к-рого основано на эффекте магнитострикции. В М. п. используется линейная магнитострикция ферромагнетиков в области техн. намагничивания (см. Ферромагнетизм). М. п. представляет собой сердечник из магнитострикц. материалов с нанесённой на него обмоткой.
В М. п.— излучателе энергия перем. магн. поля, создаваемого в сердечнике протекающим по обмотке перем. электрич. током, преобразуется в энергию механич. колебаний сердечника; в М. п.— приёмнике энергия механич. колебаний, возбуждаемых действующей на сердечник внеш. перем. силой, преобразуется в энергию магн.
поля, наводящего перем. эдс в обмотке.
М. п. используются в гидроакустике, УЗ технологии, акустоэлектронике в кач-ве излучателей и приёмников звука, фильтров, резонаторов, стабилизаторов частоты и т. п., а также в технике в кач-ве датчиков колебаний. Материалом для М. п.— излучателей и приёмников звука в гидроакустике и УЗ технике, работающих на частотах ~100 Гц — 100 кГц, служат металлич. магнитострикц. материалы и керамич. ферриты (на основе феррита никеля). Для фильтров, резонаторов и др. устройств акустоэлектроники в диапазоне десятков и сотен кГц используются магнитострикц. ферриты-шпинели, на частотах до десятков и сотен МГц — ферриты-гранаты на основе редкозем. элементов.
М. п. чаще всего работают в режиме резонансных колебаний сердечника. Сердечники М. п. в гидроакустич. устройствах или в установках пром. применения УЗ представляют собой обычно радиально колеблющиеся кольца или продольно колеблющиеся стержни, соединённые между собой приёмно-излучающими накладками.
Преобразователи из металлич. магнитострикц. материалов с сердечниками стержневой (а) и кольцевой (б и в) формы.
Сердечники из металлич. материалов для уменьшения потерь на вихревые токи набирают из штампованных пластин толщиной 0,1—0,3 мм (рис., а, б) или навивают из тонкой ленты (рис., в). Сердечники из ферритов используют монолитными. Ферритовые сердечники в фильтрах, резонаторах и т. п. устройствах имеют форму колец, гантелей, трубок. М. п. обладают электроакустич. кпд ~50%. Макс. интенсивность излучения М. п. ограничивается при работе на значит. акустич. нагрузку нелинейностью св-в материала, обусловленную явлением магн. насыщения, а при работе с малой нагрузкой ограничивается механич. прочностью материала. М. п. на основе монокристаллов феррита-граната иттрия (ИФГ) обеспечивают устройствам акустоэлектроники в акустич. СВЧ диапазоне добротность до 107.
• Харкевич А. А., Теория преобразователей, М.—Л., 1948; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, под ред. Е. Кикучи, пер. с англ., М., 1972.
И. П. Голямина.
МАГНИТОСТРИКЦИЯ (от магнит и лат. strictio — сжатие, натягивание), изменение формы и размеров тела при его намагничивании; открыто англ. учёным Дж. Джоулем (1842). В ферро- и ферримагнетиках (Fe, Ni, Со, Gd, Tb, Dy и др., в ряде сплавов, ферритах) М. достигает значит. величины (относит. удлинение l/l ~10-5—10-2). В антиферро-, пара- и диамагнетиках М. в большинстве случаев очень мала (10-6—10-7). Обратное по отношению к М. явление — изменение намагниченности ферромагн. образца при деформации — наз. магнитоупругим эффектом или Виллари эффектом.
В теории магнетизма М. рассматривают как результат проявления осн. типов вз-ствий в ферромагн. телах: электрического обменного вз-ствия и магн. вз-ствия (см. Ферромагнетизм), В соответствии с этим возможны два вида различных по природе магнитострикц. деформаций тел (их крист. решётки): за счёт изменения магн. сил (диполь-дипольных и спин-орбитальных) и за счёт изменения обменных сил.
При намагничивании ферро- и ферримагнетиков магнитные силы действуют в интервале от нулевого поля до поля напряжённостью Hs, в к-ром образец достигает техн. магн. насыщения Js. Намагничивание в этом интервале полей обусловлено процессами смещения границ между доменами и поворота магн. моментов доменов по полю. Оба эти процесса изменяют энергетич. состояние крист. решётки, что проявляется в изменении равновесных расстояний между
384
ее узлами. В результате атомы смещаются, происходит деформация решётки. М. этого вида зависит от направления и величины намагниченности J (т. е. анизотропна) и проявляется в осн. в изменении формы кристалла почти без изменения его объёма (линейная М.). Для расчёта линейной М. существуют феноменологич. ф-лы. Так, М. ферромагн. кристаллов кубич. симметрии, намагниченных до насыщения, рассчитывается по ф-ле:
где si, sj и i, j — направляющие косинусы вектора Js и направления измерения (относительно рёбер куба), a1 и a2 — константы анизотропии М., численно равные:
где (l//l)[100] и (tl/l)[111] — максимальные линейные М. соотв. в направлении ребра и диагонали ячейки, кристалла; их называют магнитострикц. постоянными. Величину s=(l/l)s наз. М. насыщения.
М., обусловленная обменными силами, в ферромагнетиках наблюдается в области намагничивания выше техн. насыщения, где магн. моменты доменов полностью ориентированы в направлении поля и происходит только рост абс. величины J (парапроцесс). М. за счёт обменных сил в кубич. кристаллах изотропна, т. е. проявляется в изменении объёма тела. В гексагональных кристаллах (напр., в Gd, Tb и др. редкозем. металлах) эта М. анизотропна. М. за счёт парапроцесса в большинстве ферромагнетиков при комнатных темп-рах мала, она мала и вблизи точки Кюри, где парапроцесс почти полностью определяет ферромагн. св-ва в-ва. Однако в нек-рых сплавах с малым коафф. теплового расширения (инварных магн. сплавах) М. велика [в магн. полях ~ 8•104 А/м (103 Э) отношение V/V~10-5]. Значительная М. при парапроцессе характерна также для ферритов и редкозем. металлов и сплавов при разрушении ни создании в них магн. полем неколлинеарных магнитных структур.
М. относится к т, н. чётным магн. эффектам, т. к. она не зависит от знака магн. поля. Наиболее исследована М. в поликрист. ферромагнетиках. Обычно измеряется относит. удлинение образца в направлении ноля H (п р о д о л ь н а я М.) или перпендикулярно направлению поля (п о п е р е ч н а я М.). Для металлов и большинства сплавов продольная и поперечная М. в области полей техн. намагничивания имеют разные знаки, причём величина поперечной М. меньше, чем продольной, а в области парапроцесса эти величины имеют одинаковый знак (рис. 1). Для большинства ферритов как продольная, так и поперечная М. отрицательны. У Fe (рис. 2) продольная М. в слабом магн. поле положительна (удлинение тела), а в более сильном поле отрицательна (укорочение тела). Для Ni при всех значениях поля продольная М. отрицательна.
Рис. 1. Продольная (I) и поперечная (II) магнитострикция сплава Ni (36%) — Fe (64%). в слабых полях они имеют разные знаки, в сильных — при парапроцессе — одинаковый знак (здесь магнитострикция носит объёмный хар-р).
Рис. 2. Зависимость продольной магнитострикции ряда поликрист. металлов, сплавов и соединений от напряжённости магн. поля.
Большинство сплавов Fe — Ni, Fe — Со, Fe — Pt и др. имеют положительную продольную М.: l/l ~(1—10)•10-6. Значительной продольной М. обладают сплавы Fe — Pt, Fe — Pd, Fe — Co, Mn — Sb, Mn — Cu — Bi, Fe — Rh. Среди ферритов наибольшая М. у CoFe2O4: l/l~ (2—25)•10-4. Рекордно высока М. у нек-рых редкозем. металлов, их сплавов и соединений: у Tb и Dy, TbFe2 и DyFe2, ферритов-гранатов (напр., Tb3Fe5O12) l/l ~10-3—10-2 (в зависимости от величины приложенного поля, при низких темп-pax). М. примерно такого же порядка обнаружена у ряда соединений урана (U3As4, U3P4 и др.). Величина, знак и графич. ход зависимости М. от напряжённости поля и намагниченности зависят от структурных особенностей образца (кристаллографич. текстуры, примесей посторонних элементов, термич. и холодной обработки). М. в области техн. намагничивания обнаруживает явление гистерезиса (рис. 3). Исследование М., особенно в области техн. намагничивания, помогает в изысканиях новых магнитных материалов как с высокой М. (см. Магнитострикционные материалы), так и с низкой [напр., отмечено, что высокая магн. проницаемость сплавов Fe — Ni типа пермаллоя связана с тем, что в них мала М. (наряду с малым значением константы магнитной анизотропии)].
М. влияет на тепловое расширение ферро-, ферри- и антиферромагнетиков, т. к. действие обменных (а в общем случае и магнитных) сил проявляется не только в магн. поле, но также и при нагревании тел в отсутствии поля (т е р м о с т р и к ц и я). Изменение объёма тел вследствие термострикции особенно значительно
Рис. 3. Магнитострикц. гистерезис железа.
вблизи точек магнитных фазовых переходов (точек Кюри и Нееля, при темп-ре перехода коллинеарной магн. структуры в неколлинеарную и др.). Наложение этих изменений объёма на обычное тепловое расширение иногда приводит к аномально малому значению коэфф. теплового расширения у нек-рых материалов, напр. у сплавов типа инвар (36% Ni, 64% Fe).
Большие аномалии модулей упругости и внутр. трения, также наблюдаемые в ферро-, ферри- и антиферромагнетиках в окрестности точек Кюри и Нееля и др. магн. фазовых переходов, обязаны влиянию М., возникающей при нагреве. Кроме того, при воздействии на ферро- и ферри-магн. тела упругих напряжений в них даже при отсутствии внеш. магн. поля происходит перераспределение магн. моментов доменов (в общем случае изменяется и абс. величина самопроизвольной намагниченности домена). Эти процессы сопровождаются дополнит. деформацией тела магнитострикц. природы — механострикцией. В непосредств. связи с механострикцией находится явление изменения под влиянием магн. поля модуля упругости ферромагн. металлов (E-эффект).
Для измерения М. наибольшее распространение получили установки, работающие по принципу механооптич. рычага, позволяющие наблюдать относит. изменения длины образца ~10-6. Ещё большую чувствительность дают радиотехн. и пнтерференц. методы. Получил распространение также метод проволочных датчиков, в к-ром на образец наклеивают проволочку, включённую в одно из плеч моста измерительного. Изменение длины
385
проволочки и её электрич. сопротивления при магнитострикц. изменении размеров образца с высокой точностью фиксируют электроизмерит. прибором. На явлении М. основано действие магнитострикц. преобразователей (датчиков) и реле, излучателей и приёмников ультразвука, фильтров и стабилизаторов частоты в радиотехн. устройствах, магнитострикц. линий задержки в акустике и т. д.
• Вонсовский С. В., Магнетизм, М., 1971; Белов К. П., Упругие, тепловые и электрические явления в ферромагнетиках, 2 изд., М., 1957; Б о з о р т Р., Ферромагнетизм, пер. с англ., М., 1956; Редкоземельные ферромагнетики и антиферромагнетики, М., 1965; Белов К. П., Редкоземельные магнетики и их применение, М., 1980.
К. П. Белов.
МАГНИТОСФЕРА, область околоземного пр-ва, физ. св-ва, размеры и форма к-рой определяются магн. полем Земли и его вз-ствием с потоками заряж. ч-ц от Солнца (солнечным ветром). М. несферична, она сильно вытянута в сторону, противоположную направлению на Солнце. С дневной стороны поток плазмы солн. ветра сжимает геомагн. поле (искажая его дипольный характер), на ночной стороне силовые линии магн. поля вытягиваются в протяжённый магн. хвост (рис.). Линии геомагн. поля, расположенные выше плоскости эклектики, направлены к Солнцу, ниже — от Солнца (согласно расположению магн. полюсов Земли). Диаметр хвоста составляет ~40Rзем (земных радиусов). Поля противоположных направлений в магн. хвосте разделяет токовый слой. Внутри токового слоя напряжённость
Строение земной магнитосферы в плоскости, проходящей через магн. полюсы Земли и линию Земля — Солнце.
поля близка к нулю, здесь давление полей разл. направлений уравновешивается давлением горячей плазмы, поэтому часто говорят, что противоположно направленные поля в геомагн. хвосте разделены нейтр. слоем. Давление магн. поля уравновешивается давлением плазмы и вдоль всей границы М. Границу М. при грубом рассмотрении можно считать непрозрачной для солн. ветра. На дневной стороне граница М.— магнитопауза — проходит на расстоянии ~10rзем. Напряжённость поля на границе зависит от параметров солн. ветра и обычно составляет неск. десятков гамм. Сверхзвук. поток солн. плазмы при обтекании М. вызывает формирование
бесстолкновительной ударной волны. Все линии геомагн. поля в М. можно разделить на два классах линии, близкие к линиям магн. диполя, и линии, уходящие в хвост М. В пр-ве эти два класса линий разделены областями, к-рые наз. полярными овалами (северным и южным). Топология поля в районе овалов такова, что здесь можно говорить о существовании магн. щели, в к-рую проникают ч-цы солн. ветра. Особенно эффективно ч-цы проникают в щель вблизи полуденного меридиана, эту область часто называют полярным каспом. Прорвавшиеся в М. ч-цы вызывают полярные сияния, однако процессы в полярных овалах чрезвычайно сложны, и происходящие там явления нельзя рассматривать как результат только прямого прорыва ч-ц солн. ветра. Внутр. часть М., расположенную в пределах диполеподобного геомагн. поля (примерно до ЗRзем), называют плазмосферой. Концентрация ч-ц «холодной» плазмы в плазмосфере составляет ~104 см-3; ч-цы плазмосферы участвуют в суточном вращении Земли.
Концентрация ч-ц во внеш. части М. на 2—3 порядка ниже, чем в плазмосфере; движение ч-ц плазмы здесь определяется электрич. полями, возбуждаемыми солн. ветром. Общая картина движений (конвекции) ч-ц во внеш. частях М. сильно зависит от величины и направления магн. поля в межпланетной среде.
Во внутр. областях М. магн. поле удерживает, как в магн. ловушке, потоки быстрых ч-ц с энергией в сотни и более кэВ. Эти ч-цы образуют радиационные пояса Земли. Резкое возрастание плотности энергии в солн. ветре приводит к магнитосферным бурям (усилению полярных сияний, возрастанию потоков ч-ц в радиац. поясах, искажению магн. поля Земли). Бури часто объясняют быстрым выделением энергии, запасённой в полях хвостовой части М. Альтернативным объяснением явл. представление о магнитосферной динамо-генерации эдс на границе М.
Исследования при помощи косм. аппаратов показали, что М. существует и у нек-рых др. планет. М. Меркурия напоминает М. Земли, но магн. поле Меркурия значительно слабее. М. Юпитера — самая мощная среди М. планет. Она простирается до 100RЮ. Большие размеры М. и высокая скорость вращения Юпитера приводят к заметному влиянию на М. центробежных сил — М. Юпитера сплющена. На её границе напряжённость магн. поля ~6. Обширной М. окружена планета Сатурн. Магн. поле Венеры определяется в осн. токами униполярной индукции, возникающими при взаимодействии солн. ветра с ионосферой. Здесь, как и у комет, можно говорить о наведённой М.
• А к а с о ф у С. И., Ч е п м е н С., Солнечно-земная физика, пер. с англ., ч. 1—2, М., 1974—75; X е с с В. Н., Радиационный пояс и магнитосфера, М., 1972; R о е d e r e r J. G., Global problems in magneto-spheric plasma physics and prospects for their solution, «Space sci. rev.», 1977, v. 21, № 1, p. 23—71.
И. М. Подгорный.
МАГНИТОТЕПЛОВЫЕ ЯВЛЕНИЯ, изменения теплового состояния тел при изменениях их магн. состояния (намагничивания или размагничивания). Различают М. я. при адиабатич. намагничивании и размагничивании (магпетокалорический эффект, при к-ром происходит изменение темп-ры тела) п М. я. изотермические, при к-рых происходит выделение или поглощение теплоты. Принципиально М. я. можно наблюдать в любых в-вах, т. к. их причина имеет общий термодинамич. хар-р — изменение внутренней энергии тела при изменениях его магн. состояния. Особенно значительны М. я. в ферро-, антиферро- и ферримагнетиках; хар-р М. я. в этих в-вах зависит от того, какие процессы намагничивания в них происходят: 1) смещение границ между доменами, 2) вращение магн. моментов доменов, 3) парапроцесс, 4) процессы разрушения или индуцирования неколлинеарной магнитной структуры (в антиферро- и ферромагнетиках). Особенно велики тепловые эффекты, сопутствующие последним двум процессам. В тесной термодинамич. связи с М. я., возникающими при намагничивании, находятся наблюдаемые в ферро-, антиферро- и ферримагнетиках аномалии уд. теплоёмкости вблизи точек Кюри, Нееля и др. точек магн. фазовых переходов (напр., вблизи точки изменения неколлинеарной магн. структуры ферримагнетика). М. я. в нек-рых парамагнетиках используют для получения сверхнизких темп-р (см. Магнитное охлаждение].
• Вонсовский С. В., Магнетизм, М., 1971; Белов К. П., Редкоземельные магнетики и их применение, М., 1980.
К. П. Белов.
МАГНИТОТОРМОЗНОЕ ИЗЛУЧЕНИЕ, то же, что синхротронное излучение.
386
Достарыңызбен бөлісу: |