Майкл А. Кремо Деволюция человека: Ведическая альтернатива теории Дарвина


Биологическая сложность человеческого организма



бет11/61
Дата20.06.2016
өлшемі2.8 Mb.
#150789
1   ...   7   8   9   10   11   12   13   14   ...   61

Биологическая сложность человеческого организма

Неимоверная сложность органов человеческого тела не поддается никаким объяснениям с точки зрения теории эволюции. Дарвинисты так и не смогли дать подробного объяснения того, как путем произвольных генетических вариаций и естественного отбора могли возникнуть эти органы.



Глаз

Человеческий глаз – один из таких органов, который может функционировать лишь в том виде, в котором он существует в настоящее время. Зрачок глаза пропускает свет внутрь глазного яблока, а хрусталик фокусирует его на сетчатке. Глаз также обладает механизмом коррекции интерференции между световыми волнами различной длины. Трудно представить себе, как функционировал бы глаз, не будь в нем хотя бы одного из этих элементов. Даже Дарвин понимал, что глаз и другие сложные структуры не вписываются в рамки теории эволюции, согласно которой эти структуры постепенно формировались на протяжении многих поколений. Дарвин не дал подробного объяснения тому, как это могло произойти, а просто отметил факт существования разных типов глаз у разных живых существ – либо обычных светочувствительных участков, либо простых углублений с простыми линзами, либо более сложных систем. Он предположил, что человеческий глаз мог сформироваться, проходя через эти этапы. Дарвин оставил без внимания вопрос о том, как вообще мог появиться светочувствительный участок на теле. «То, как возник чувствительный к свету нерв, нас касается так же мало, как вопрос возникновения самой жизни» (Darwin. 1872. P. 151; Behe. 1996. Pp. 16–18).

Данное Дарвиным расплывчатое объяснение того, как светочувствительный участок на коже постепенно развился в человеческий глаз, по сложности не уступающий фотоаппарату или кинокамере, возможно, и обладает некоторой видимостью правдоподобия, но не является научным объяснением происхождения этого органа. Дарвин просто предлагает уверовать в теорию эволюции, оставляя нам самим представлять себе, как это происходило. Но если мы хотим перейти от воображения к науке, то стоит рассмотреть структуру глаза на биомолекулярном уровне.

Довольно подробное биохимическое описание человеческого зрения встречается у Девлина (Devlin. 1992. Pp. 938–954). Биохимик Майкл Бехе суммирует объяснения Девлина следующим образом: «При попадании света на сетчатку фотон взаимодействует с молекулой 11 цис ретиналь, которой требуются пикосекунды, чтобы трансформироваться в молекулу транс ретиналь… Такое изменение в форме молекулы сетчатки приводит к изменению формы молекулы белка родопсина, с которым она тесно взаимодействует… Трансформированный белок, который теперь именуется метародопсином II, соединяется с другим белком, трансдуцином. Перед тем как соединиться с метародопсином II, трансдуцин устанавливает прочную связь с небольшой молекулой GDP. Но, когда трансдуцин начинает взаимодействовать с метародопсином II, GDP отпадает, а ее место занимает молекула GTP… Затем GTP трансдуцин метародопсин II соединяется с белком фосфодиэстираза, который располагается на внутренней стороне клеточной мембраны. В связке с метародопсином II и сопутствующими ему молекулами, фосфодиэстираза приобретает химическое свойство понижать содержание молекул cGMP в клетке… Фотодиестираза понижает уровень содержания этих молекул подобно тому, как вынутая из ванны пробка понижает в ней уровень воды. Существует также и другой мембранный белок, который связывает молекулы cGMP и называется ионным каналом. Он действует как предохранительный клапан, регулирующий количество ионов натрия в клетке, тогда как другой белок отвечает за наполнение клетки ионом натрия. Взаимодействие этих двух белков поддерживает содержание ионов натрия в клетке в пределах допустимого. Когда количество молекул cGMP уменьшается вследствие их расщепления фосфодиестиразой, ионные каналы закрываются, что приводит к понижению концентрации положительно заряженных ионов натрия. В итоге возникает разница в зарядах на поверхности клеточной мембраны, которая приводит к тому, что ток начинает течь по нерву в мозг. В результате, после обработки сигнала мозгом, возникает зрительное изображение» (Behe. 1996. Pp. 18–21).

Другая, не менее сложная, цепь реакций восстанавливает исходные химические элементы, которые принимают участие в этом процессе: 11 цис ретиналь, cGMP и ионы натрия (Behe. 1996. P. 21). И это далеко не полное описание биохимических процессов, обеспечивающих зрительное восприятие. Бехе утверждает: «В конечном счете... именно к такому уровню объяснения должны стремиться биологи. Чтобы доподлинно понять какую либо функцию, необходимо прежде понять каждую ее стадию. В биологических процессах эти стадии следует рассматривать на молекулярном уровне, чтобы объяснение таких биологических явлений, как зрение, пищеварение или иммунитет, включало в себя их молекулярное объяснение» (Behe. 1996. P. 22). Эволюционисты до сих пор не представили такого объяснения.

Механизм сортировки лизосомных мембранных белков

Внутри клетки находится образование, которое отвечает за утилизацию разрушенных молекул белка – лизосома. В лизосоме присутствуют энзимы, которые расщепляют белки. Эти энзимы образуются в рибосомах, которые, в свою очередь, располагаются в эндоплазматической сети. Энзимы, производимые в рибосомах, снабжаются особыми «ярлычками» из аминокислотных соединений, которые позволяют им проникать сквозь стенки рибосом в эндоплазматическую сеть. Там они помечаются другими аминокислотными соединениями, которые позволяют им выйти за пределы этой сети. Энзимы направляются к лизосоме и присоединяются к ее поверхности. Там они помечаются другими «ярлычками», что позволяет им проникнуть внутрь лизосомы и выполнить свою функцию (Behe. 1998. Pp. 181–182; Alberts et al., 1994, Pp. 551–560). Эта транспортная сеть называется механизмом сортировки лизосомных мембранных белков.

Механизм сортировки лизосомных мембранных белков может нарушиться вследствие I клеточной болезни. В этом случае, вместо того чтобы переносить расщепляющие белок энзимы из рибосом в лизосомы, система переносит их на стенки клетки, откуда они попадают за ее пределы. Тем временем разрушенные белки попадают в лизосомы. В отсутствие утилизирующих белок энзимов лизосомы переполняются белковым мусором как мусорные баки. Чтобы воспрепятствовать этому, клетка производит новые лизосомы, которые тоже наполняются белковыми отходами. В конце концов, когда в клетке накапливается слишком много лизосом, наполненных белковым мусором, клетка разрушается, что приводит к смерти всего организма. На этом примере видно, что происходит, когда не достает одной части в сложной системе, – вся система разрушается. Все составляющие механизма сортировки лизосомных мембранных белков должны находиться на своем месте – только тогда он будет работать эффективно.

Бехе утверждает: «Механизм сортировки лизосомных мембранных белков – это поражающий воображение процесс, который по сложности не уступает полностью автоматизированной системе доставки вакцины со склада в больницу, находящейся за тысячи километров от склада. Сбои в этой транспортной системе могут иметь такие же печальные последствия, как и перебои в доставке вакцины в охваченный эпидемией город. Анализ показывает, что это сложнейший механизм, нарушение целостности которого лишает его функциональности, и поэтому его возникновение невозможно объяснить с точки зрения постепенного развития, за которое ратуют дарвинисты. Нигде в профессиональной биохимической литературе мы не встретим даже намеков на подробное описание ступеней возникновения подобной системы. Теория Дарвина бессильна что либо объяснить, когда речь идет о происхождении такой невообразимо сложной системы» (Behe. 1996. Pp. 115–116).





Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   61




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет