Математическая логика



бет6/18
Дата19.04.2023
өлшемі0.93 Mb.
#472456
түріЗадача
1   2   3   4   5   6   7   8   9   ...   18
МАТЕМАТИЧЕСКАЯ ЛОГИКА

Определение 1. Если А  В является истинным высказыванием, то истинность А является достаточным условием истинности В, а истинность В – необходимым условием истинности А.
Определение 2. Теоремы, записанные в виде импликаций А  В и В  А называются взаимно-обратными. Если верны обе импликации, то истинность А является необходимым и достаточным условием истинности В, и наоборот.
Предположим, что утверждение А истинно и докажем, что в этом случае В тоже истинно. Так доказывается теорема вида А  В. Однако такая схема доказательства “в лоб” не всегда удобна. Для доказательства истинности импликаций и эквиваленций часто используют свойства эквивалентности формул.
Известно, что
(А  В)  (В  )  ( )  ( (А  ) ).
Следовательно, имеем три равносильных способа доказательства, т.к. вместо истинности импликации можно доказывать истинность эквивалентной формулы.
Например, А = “отношение R асимметрично”, В = “отношение R антирефлексивно”. Тогда доказательство по схеме выглядит так: R рефлексивно, т.е. (х, х)  R, значит, (х, х)  R– 1 , т.е. (х, х)  R  R– 1  . Это означает, что R не асимметрично.
Доказательство истинности ( (А  )), или, что то же самое, ложности (А  ), так называемое доказательство от противного, основано на предположении: А – истинно, а В – ложно. В результате должно быть получено ТЛ-высказывание, или противоречие.
Например, предположим, что R асимметрично и рефлексивно. В силу асимметричности неверно одно из следующих соотношений: (х, у)  R и (у, х)  R. Положим х = у. Тогда, включение (х, х)  R неверно, т.е. утверждение – ложно, значит и (А  ) – ложно.
В автоматическом управлении и при эксплуатации вычислительных ма­шин приходится иметь дело с переключательными схемами (релейно-контакт­ными, полупроводниковыми), состоящие из сотен реле, полупроводников, маг­нитных элементов. Переключательная схема состоит из переключателей (на­пример, кнопочные устройства, электромагнитные реле, полупроводниковые элементы и т.п.) и соединяющих их проводников. При конструировании таких схем существенную помощь может оказать алгебра высказываний: можно по­строить схему, выполняющую требуемые функции (синтезирование схемы) или изучить действие построенной схемы и возможно ее упростить (анализ схемы).
Каждой схеме ставится в соответствие формула алгебры высказываний, и каждая формула реализуется с помощью некоторой схемы. Покажем, как уста­новить такое соответствие. Каждому переключателю P ставится в соответствие высказывательная переменная P, которая истинна тогда и только тогда, когда переключатель P замкнут. Схеме с последовательным соединением переключа­телей P и Q соответствует формула, являющаяся конъюнкцией высказаватель­ных переменных, соответствующих этим переключателям, . Схеме с параллель­ным соединением переключателей P и Q соответствует формула, являющаяся дизъюнкцией высказавательных переменных, соответствующих этим переклю­чателям, . Два переключателя P и могут быть связаны так, что когда P замкнут, то разомкнут. Тогда переключателю ставится в соответствие переменная , являющаяся отрицанием P.
Задание. Упростить схему



Решение. Запишем формулу, соответствующую схеме, по приведенным выше правилам
U = .


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   18




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет