Математика, физика, информатика сериясы), №4 (23), 2022


ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ



Pdf көрінісі
бет10/12
Дата05.02.2024
өлшемі0.58 Mb.
#490915
1   ...   4   5   6   7   8   9   10   11   12
№4 ХҚТУ Хабарлары 2022-19-28

ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ 
 
1. 
Heisenberg W.Zur Theorie des Ferromagnetismus // Zeitschrift fur Physik. – 1928. – Sept. – 
Vol. 49, no. 9/10. – P. 619–636. 
2. 
Baxter R.J. Partition function of the Eight-Vertex lattice model // Annals of Physics. – 1972. – 
Т. 70, № 1. – Р. 193–228. 
3. 
Baxter R.J. One-dimensional anisotropic Heisenberg chain // Annals of Physics. – 1972. – Т. 
70, № 2. – Р. 323–337. 
4. 
Тахтаджян Л.А., Фаддеев Л.Д. Квантовый метод обратной задачи и XYZ модель 
Гейзенберга // УМН. – 1979. – Т. 34, 5(209). – С. 13–63. 
5. 
Изюмов Ю.А., Скрябин Ю.Н. Статистическая механика магнитоупорядоченных систем. 
– М.: Наука, 1987. – 264 с. 
6. 
Tsilevich N.V. Spectral properties of the periodic Coxeter Laplacian in the two-row 
ferromagnetic case // Зап. научн. сем. ПОМИ. – 2010. – Vol. 378. – P. 111–132. 


Қ.А. Ясауи атындағы Халықаралық қазақ-түрік университетінің хабарлары 
(математика, физика, информатика сериясы), №4 (23), 2022 
 
 
 
27 
7. 
Tsilevich N.V. On the behavior of the periodic Coxeter Laplacian in some representations 
related to the antiferromagnetic asymptotic mode and continual limits // Зап. научн. сем. 
ПОМИ.– 2011. – Vol. 390. – P. 286–298. 
8. 
Vershik A.M. Statistical mechanics of combinatorial partitions, and their limit shapes. // 
Funct. Anal. Appl. – 1996. – Vol. 30. – P. 90–105. 
9. 
Вершик А.М., Павлов Д.А. Численные эксперименты в задачах асимптотической 
теории представлений // Зап. научн. сем. ПОМИ. – 2009. – Т. 373. – С. 77–93. 
10. Rost H. Non-equilibrium behaviour of a many particle process: Density profile and local 
equilibria // Probability Theory and Related Fields. – 1981. – Vol. 58, no. 1. – P. 41–53. 
11. Вершик А.М., Керов С.В. Асимптотика максимальной и типичной размерностей 
неприводимых представлений симметрической группы // Функциональный анализ и его 
приложения. – 1985. – Т. 19, № 1. – С. 25–36. 
12. Cerf R., Kenyon R. The Low-Temperature Expansion of the Wulff Crystal in the 3D Ising 
Model // Communications in Mathematical Physics. – 2001. – Vol. 222, no. 1. – P. 147–
179.100 
13. Боголюбов Н.М. Перечисление плоских разбиений и алгебраический анзац Бете // 
ТМФ. – 2007. – Т. 150, № 2. – С. 193–203. 
14. Feynman R.P., Hibbs A.R. Quantum Mechanics and PathIntegrals. – McGraw–Hill College, 
1965. – 365 p. 
15. Hoyle F., Narlikar J.V. Cosmological Models in a Conformally Invariant Gravitational 
Theory–II: A New Model // Monthly Notices of the Royal Astronomical Society. – 1972. – 
Vol. 155, no. 3. – P. 323–335. 
16. Gersch H.A. Feynman’s relativistic chessboard as an Ising model // Int. J. Theor. Phys. – 
1981. – Vol. 20, no. 7. – P. 491–501. 


Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   12




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет