Ұғымдардың анықталу тәсілдері
Ұғымдарды анықтаудың әр тұрлі тәсілдері бар. Оларды өте-мөте айқын және айқын емес сияқты негізгі екі топқа бөледі. Мәселен айқын анықтама екі ұғымды беттестіретіндей, теңестіретіндей теңдік тұрінде беріледі. Мысалы: тік бұрышты I үшбұрыш дегеніміз - ол тік бұрышы бар үшбұрыш". Тік бұрышты үшбұрыштың осы анықтамасы шартты тұрде "а дегеніміз в" дегенді білдіреді.
Айқын емес анықтама екі ұғымды теңестіргендей тұрде берілмейді. Мұндай анықтамалардың мысалы ретінде контексуалдық және остенсивтік деп аталатын анықтамаларды атауға болады. Контекстуалдық анықтамаларда жаңа ұғымның мазмұны текстінің үзіндісі аркылы, яғни текстегі хабарламаның желісіне орай енгізілетін ұғымның мән-мағынасын нақты жағдайда сипаттау барысында ашылады.Бұған бастауыш мектептсгі тенлсулі және оның шешуін анықтап беру жолдары мысал бола алады. Объектіні көрнекі көрсету арқылы термин енгізілгенде остенсивтік анықтамалар пайдаланылады. Бұл тәсілмен бастауыш мектепте "сандық теңдік" және "сандық теңсіздік" ұғымдарын анықтайды.
Ұғымның мынандай жолдармен де анықталуы мүмкін:
1.Генетикалық немесе конструктивтік(ұғымның шығу тегін көрсететін) тәсілмен, мысалы: үшбұрыш, шеңбер ұғымдарын
анықтау.
2.Индуктивтік жолмен, мысалы: арифметикалық прогрессия
уғымын анықтау.
3.Абстракцияның (дерексіздендірудің) көмегімен, мысалы:
натурал сан ұғымын эквивалентті болатын шектеулі жиындар
1 класының сипаттамасы ретінде енпзу.
4. Аксиоматикалық (ұғым бастапқы деп есептелініп, олардың
арасындағы байланыстар аксиоматикалык жолмен немесе
] аксиомалар жүйесімен түсіндіріледі) жолмен, мысалы: натурал сан
уғымын аксиомалар арқылы (Пеано аксиомаларына негіздей : отырып) енгізу.
5. Ең жақын тегін және түрлік айырмашылығын айқын бөліп көрсету бұл тәсілдің мәнісі анықталатын ұғымды негізгі және бұрыннан белгілі ұғымдарға келтіру болып табылады мысалы: квадрат ұғымын анықтау.
Достарыңызбен бөлісу: |