Математиканы оқыту әдістемесі ПӘнінен оқУ-Әдістемелік кешен



бет27/54
Дата19.05.2022
өлшемі7.15 Mb.
#457530
түріСеминар
1   ...   23   24   25   26   27   28   29   30   ...   54
umk mom 2021-22

8.3 Математикалық есептерді шеше білуге үйрету және одан әрі оған дағдыландыру-мұғалімдер алдында тұрған негізгі, жауапты жұмыс. Әр оқушының математикаға деген ұқыптылығы мен зейінділігін түрліше есептерді шығару арқылы қалыптастыруға болады. Есепті шешуге үйрету мен дағдыландыру көбіне сабақ өту кезінде болатындықтан, барлық оқушыларды есеп шығарудың жалпы әдіс-тәсілдерімен қаруландыру керек. Мұны іске асыру үшін олардың есеп шығару процесіндегі іс-әрекеттерін басқарып, жұмысты белгілі бір жүйемен жүргізген жөн. Оқушылардың математиканы оқып білудегі жетістігі олардың есепті шығаруға қаншалықты төсілгендігіне қарай бағаланады. Есеп шығару кезінде математикалық ұғымдардың мағынасы анық ашылып, нақтыланады. Енді есеп шешуге үйретудің түрлеріне тоқталайық: 1) Есепті жаппай шешу. Есепті жаппай шешу деп бір есепті барлық оқушылардың бір уақытта шығаруын түсінеміз. Жаппай шешуді ұйымдастырудың алуан түрі бар: а) Есепті ауызша шешу 4-7 сыныптарда кең тараған. Мұндай есептер негізінен ауызша тез орындауға болатын есептеулерді, теңбе-тең түрлендірудегі және т.б. жаттығуларды қамтиды. Есепті ауызша шешу арқылы оқушыны ойша шапшаң есептеуге, ойлау қабілетін дамытуға мүмкіндік береді. Есепті ауызша шешу барысында әр түрлі кестелерді, анықтама және көрнекі материалдарды пайдаланса, оқушылардың уақытын үнемдеуге, сабақты жандандыруға көмектеседі. б) Есепті жазбаша шешу. Барлық оқушылар бір мезгілде есепті тақтада шешеді. Мұнда не оқушы, не мұғалім шешеді, не мұғалім нұсқауы бойынша: 1) жаңа ұғым, не жаңа әдіс көрсеткеннен кейін тақтада есеп шығарады; 2) өз бетінше есепті барлық оқушылар шығара алмағанда; 3) бір есепті бірнеше әдіспен шешіп олардың тиімділерін таңдап алу қажет болғанда; 4) есептерді шешуде кеткен қателерді талдағанда тақтада шешіледі. Бұл жағдайларды жаппай түрде талдау пайдалы.
2) Өз бетінше есепті жазып шешу. Былайша жазып шешкенде оқушы шығармашылық жолмен ойлайды. Өз бетінше талдап, әртүрлі теориялық материалды есепке қажетінше қолданады. Өз бетінше шешудің көп пайдасы бар: 1) оқуға деген белсенділігі артады, қызығушы шығармашылық бастамасы орнығады, ойлау қызметі дамиды. 2) тақтадан көшірмей оқушы өзі ойлауға мәжбүр болады, амалсыз сабаққа дайындалады. Өз бетінше шешкенде өз білімін бағалайды. 3) мұғалім әр оқушының жұмысындағы жіберілетін қателерді жоюға мүмкіндік береді. 4) есеп шешу үшін оқушы қажетті теориялық материалды өз бетінше оқып еске түсіреді, ұқсас есеппен мұғалім айтқан есептің шешу үлгісін талдап, сонан соң осыларға ұқсас есепті оқушы жеке өзі шешеді. 5) математикалық есептердің шешімін түсіндіреді. Сыныптағы оқушылар есептің шешуін бастан аяғына дейін түсіндіреді. Түсіндіретін оқушы өзі орындаған амалдарды, түрлендірулерді неге негізделіп түрлендіргенін, басқаша ойларын, есептің шешуі нелерге негізделгенін түсіндіреді. Есептің әр жолы белгілі математикалық теорияға негізделетіні айтылуы керек. Есептерді таңдағанда оны оқушылар қабілетіне қарай бір жүйеге салу керек, ол оқушылардың қабілетін дамытатындай болуы тиіс. Бұл жағдайда мұғалімнің қызметі есептің шешу жолын түсіндіруі, сыныптағы әр оқушының қабілетіне, мүмкіндігіне қарай есептерді шешуді ұйымдастыру болып табылады. Оқушылардың өздігінен есеп шешуін өрістетіп, олардың дербестігін одан әрі дамыту әр мұғалімнің міндеті. Сондықтан оқушыларға қажетті нұсқаулар беріп, оқулықтағы тиісті тақырыптарды, анықтама материалды көрсетіп отырғаны жөн. Өздігінен есеп шешу іскерлігін қалыптастыруда үй тапсырмасының маңызы ерекше. Үй тапсырмасының басты мақсаты - сыныпта өткен теориялық материалды үйде пысықтап, қайталаумен бірге, оқушылардың математикалық білімін, іскерлігі мен машықтарын одан әрі дамыту. Сондықтан үй тапсырмасын бере отырып, мұғалім есеп шешу барысында кездесетін қиындықтарға қатысты кеңестер мен нұсқаулар беруі керек. 3) Есеп шешуді қорытындылау берілген есептің мазмұны мен шешу тәсілдерін талқылауды, олардың ішінен ең тиімдісін таңдауды, берілген есептен туындайтын жаңа есепті тұжырымдауды және оны шешуді, берілген есепті шығару тәсіліне үлгі боларлық фактілерді қамтиды. Әр алуан есептерді шешу арқылы оның шешуі қандай жағдайда табылатынын анықтау үшін қандай амалдарға жүгіну қажеттілігін және шешу жолының қандай айырықша белгілері тиімді тәсілдерді таңдауға мүмкіндік беретінін көрсету керек. Үлгі боларлық қорытындыларды үнемі жинақтап, жүйелеп және оларды оқыту процесінде ұдайы қолдану, оқушылардың ізденгіштік қасиеттерін шыңдаудың, шығармашылық қызметін жандандырудың пәрменді құралы болып табылады.




Достарыңызбен бөлісу:
1   ...   23   24   25   26   27   28   29   30   ...   54




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет