DYNAMICS OF ε-CL-20 DISSOLUTION OF DIFFERENT MORFOLOGY IN NGC
P.I. Kalmykov 1, 2, E.V. Artyomova 1, K.A. Sidorov 1, K.V. Kolpakova 1, A.V. Kireeva 1, N.V. Rogotovskaya 1, N.V. Kozyrev 2
1 JSC Federal Research&Production Center «ALTAI», Biysk, Russia
2 Institute for Problems of Chemical and Energetic Technologies SB RAS,
Biysk, Russia
Providing physico-chemical stability of the compositions and keeping quality of the basic properties of products based on polycyclic nitramine CL-20 requires a detailed study of its solubility in different media and plasticizers, as well as the phase interaction in the energy condensed systems (ECS) and composite explosives (CE). For the newly developed compositions, due to the physico-chemical properties of CL-20, the increased solubility in polar solvents was the principal (acetates, nitroethane, nitrotriazole and linear nitramine), which leading to uncontrolled change in the morphology of the filler particles and, consequently, to changing the mechanical characteristics of ECS, explosive properties of CE and their manufacturability [1–4].
The interaction of the solvent with the dissolved substance leads to phase transitions, decomposition or complex formation [5, 6].
In order to estimate the factors influencing the physico-chemical stability of created materials on the basis of CL-20, it is necessary to study the dynamics of its dissolution in the liquid phase, depending on dispersion and defectiveness of particles, obtaining conditions, crystallization, and mechanical and chemical treatment of the product.
The purpose of this study is the quantitative estimation of the dynamics of CL-20 dissolution process, modified by various methods, in nitroglycerin (NGC) at T=20…50 C temperature, using refractometry [7], polythermal calorimetry and optical microscopy methods.
The influence of ε-CL-20 crystal defects on solubility in NGC
The solubility and dissolution dynamics of solids are determined not only by the nature of the solvent and its temperature, but also by the defect structure of the crystals surface
Experimental results the quantitative determination of solubility, kinetics and dissolution rate constant, defined as the reciprocal of time to achieve equilibrium solubility in the temperature range of 23…51 °C, for ε-CL-20 (commercial batch 62/12) in NGC are shown in Figure 1, a, b.
The presented results show that with increasing temperature, the concentration of dissolved substances naturally increases practically in the whole thermostatic control range, and the time to reach the equilibrium level of solubility (output of isothermal curves on the plateau) is reduced more than three times (Figure 1, a).
|
|
а
|
b
|
Figure 1– Kinetic dependences of CL-20 solubility in NGC on time when Т=23(1); 27(2); 30(3); 40(4); 51(5) °С (а) and logarithmic anamorphosis of dependence of CL-20 dissolution rate
constant on temperature (b)
In the studied temperature range the two explicit areas are found where the activation energy of dissolution varies by more than 4 times (Figure 1, b).
At relatively low temperatures (23 … 30 °С) the dissolution occurs mainly with defective areas of crystalline particles, as well as sharp edges and vertices. With increasing the temperature the dissolution process is accelerated, affecting the areas with more advanced morphology, where the energy of separation of CL-20 molecules from crystal is high.
To estimate the impact of defects of CL-20 crystals in the process of its dissolution in NGC, marketable product (57) was used, which was obtained under conditions of pilot production at FR&PC «ALTAI», Biysk, and modified by mechanical smoothing in GosNII «Crystal», Dzerzhinsk (1/12).
Dynamics curves of CL-20 crystals dissolution in NGC are given in Figure 2.
____________________________________
Figure 2 – Dynamics of dissolution of CL-20 in NGC at T=50 °С 1 – 57, 2 – 1–12 (smoothed)
____________________________________
As it can be seen from Figure 2 dynamics of dissolution of CL-20 crystals with different degrees of defectiveness is noticeable different. The smoothed crystals of the modified product are dissolved in NGC in two steps. During the first 2 hours the concentration of marketable product reaches the limit, making 0,62 % mass., whereas the smoothed CL-20 for the same period - in two times less 0,3 % mass. With further thermostatic control of the solutions at 50 °С, the dissolution of smoothed product accelerates again, and its concentration in 7,5 h is also close to the maximum. It should be noted that the product solubility of both samples, regardless of the state of the surface, is the same (0,62 % mass.) in accordance with the classical thermodynamics [13, 14].
Phased dissolution of smoothed product can be explained by the destruction of the surface layer of smoothed particles resulting loss of strength due to the long etching in an unsaturated solution.
The influence of dispersion of ε-CL-20 crystals on solubility dynamics in NGC
The solubility of solids in liquids is usually limited, due to the need for the energy consumption of the transfer of the dissolved substance from solid to liquid, i.e. the heat of dissolution. Increasing the ability to release the substance from a solid to a liquid phase (interphase distribution) occurring with increasing the degree of dispersion, obviously, leads to an increase in its solubility. Therefore, small crystals, usually, have greater solubility than larger ones.
Solubility and dissolution dynamics of CL-20 product with different dispersion by the of production of GosNII «Crystal» (1–13, 2–13, 3–13 with an average particle size dav = 35, 95 and 216 mcn, respectively).
The dissolution curves and rate constants of dissolution of studied batches of CL-20 in NGC at Т = 50 °С from the size of product particles are given in Figure 3 a, b.
a b
Figure 3 – Effect of dispersion of CL-20 on the dynamics of (a) and rate constants of dissolution (b) in NGC at T = 50 ° and dav= 35 (1), 95 (2), 216 (3) mcn
The increase in the average size of CL-20 particles with dav from 35 to 216 microns leads to almost double reduction of its solubility in NGC and sharp (by an order) decrease of rate constants of dissolution. The strongest dependence of the rate constant of dissolution of CL-20 in NGC occurs when dav is from 35 to 85 micron. Further increasing of the particle size does not cause appreciable changes in the rate of dissolution of CL-20 crystals.
The influence of processing methods of ε-CL-20crystallization on its solubility in NGC
To obtain crystalline ε-CL-20 two methods of crystallization is applied: precipitation and evaporation. Usually, it is used at least two components: one of them acts as a solvent for CL-20 product (solubility more than 20 %), and the second one acts as precipitator (solubility less than 5 %). The evaporation method of crystallization is used in the production, made of a mixture of ethyl acetate-toluene. Unlike the precipitation method, the evaporation technology allows receiving the product for a short time and with high output. The method consists of simple or vacuum distillation of one part of the solvent. When the product concentration in the solution reaches critical value, corresponding to the beginning of the process of crystal formation, the product part from the solution transfers into the solid state, i.e., the formation and growth of crystals occur. Gradually the concentration of CL-20 in the solution decreases. At a certain moment of time, the equilibrium is reached between the product concentration in solution and solid phase, and the process of crystal formation is attenuated. The isolation time and solvent distillation rate from the solution affect the morphology and surface structure of the marketable product, as well as on its solubility in NGC. Additional isolation of the product in the mother solution allows slow precipitating of dissolved material on the overall surface of the polycrystal. The result is the difference in the propensity to dissolve the superficial and deep layers of such a polycrystal. In this case, there is an interest to find the optimal modes of evaporative crystallization with different isolation times of the product in the mother solution, to ensure the increasing of more voluminous layers on the surface of CL-20 crystals.
The isolation time of CL-20 in toluene mother solution (94.2 %), ethyl acetate (3.9 %) and (1.9 %) of acetone and xylene were carried out in a flask of 250 ml when the stirring speed 150 g CL-20 weighted portion 10 g was brought to 150 g of the mother solution, switched ON the mixer and kept at T=21…22 оС during 1–48 hours. After isolation, the product was filtered on a funnel, not cooling the mass. Output: 9.98 g; the mass content of the basic substance 99.06 %. After isolation, the product was filtered on a funnel, washed with 10ml of toluene and dried in the air.
Two batches of product 1 of the experimental-industrial production (τisol = 0–10 h), and 57 of pilot production was used to study the influence of the isolation time of CL-20 in the ethyl acetate-toluene mother solution on the solubility in NGC at T=50 °C.
(τisol =5–48 h, both in isothermal mode at T =21…22 оС).
Figure 4 shows: а – solubility curves of СL-20 crystals in NGC at T=50 °C extracted at short periods of isolation (τisol = 0–10 h); b –solubility curves of СL-20 crystals 57 extracted at long periods of isolation (τisol = 5–48 h).
_______________________________
Figure 4 – Solubility samples of ε-CL-20 1 (а) and 57 (b) in NGC at t=50 °C depending on isolation time in ethyl acetate-toluene mother solution
_______________________________
Figure 4 shows that the dependence of the solubility of both CL-20 batches in NGC on isolation time τisol in the mother solution, pass through a minimum with solubility: 1 Cm = 0.58 % at τ = 3 h, and for 57 Cm= 0.42 % at τ = 5…10 h. These conditions, obviously, are not optimal and depend on the choice of the solvent mixture.
Thus, the dynamics of dissolution is studied and the solubility ε-CL-20 product in NGC at T=20…50 °C is determined. It is established that the solubility of CL-20 in NGC T=50 C is 0.6…1.0 % mass., which conform to literature data.
It was defined two areas of temperature dependence of the solubility of ε-CL-20 in NGC, differing by the activation energy of the process (6.4 kcal/mole at T=20…30 C and 27.6 kcal/mole at T=30…50 C). Their presence is due to the different influenced level of defectiveness of product particles.
The influence of CL-20 dispersion on the process dynamics of its dissolution in NGC was studied. The dependence of the rate constant of dissolution of the average particle size of the product was defined. The strongest dependence is the dependence of the rate constant of dissolution (Kт) CL-20 in NGC for a fine product, with daver<80 mcm.
It was found that isolation of CL-20 in mother solution (ethyl acetate-toluene), leads to decrease of solubility in NGC in ~ 1.5…2.0 times.
References
1. Holtz E., Ornellas D., Foltz M.F. et al. The Solubility of ε-CL-20 in Selected Materials // J. Propellants, Explosives, Pirotechnics 1994. 19. – Р. 206–212.
2. Kalmykov P.I., Komarov V.F., Sidorov K.A. et al. Physico-chemical Aspects of the Limited Solubility of CL-20 in Nitroesters // Advances in Special Chemistry and Chemical Technology: All-Russian Scien. and Techn. Conf. – M.: CNIINGI, 2010. – P. 244–249.
3. Komarov V.F., Popok N.I., Sakovich G.V. Principles of Construction and Realization of Explosions of Composite Explosives // Fundamental and Applied Problems of Technical Chemistry. Collection of Scientific Studies. –M.: Nauka.– 2011. – P. 166–193.
4. Komarov V.F., Kalmykov P.I., Bojarinova N.V. Solvation of Hexanitrohexaazaizowurtsitan when Dissolving in Melt of Trinitrotoluene // Journal of Applied Chemistry. – 2012. – V. 85. – No. 5.– P. 746–749.
5. Popok V.N., Bychin N.V., Popok N.I. et al. Mechanical Activation of Co-crystallization of Some Nitrocompounds // Butlerov’s Reports. – 2013. – V. 34 – No. 5. – P. 106–123.
6. Vasilieva A.A., Dashko D.V., Dushenok S.A. et al. Production, Structure and Properties of Bimolecular Crystal CL-20 and DNP // 17 International Workshop, New Tendencies of Energetic Materials. Collection of Scientific Studies. – Pardubitsa, Czech Republic, April, 9–11, 2014.
7. Kalmykov P.I. Determination of Components Solubility in Liquid Nitroplasticizers by Refractometry Method: Methodology 07508902.01103.00301. – JSC FR&PC «ALTAI», 2013. – P. 16.
Реокинетика структурирования азоловых связующих стерически
затрудненными ароматическими динитрил-N-оксидами
П.И. Калмыков1, Л.Ф. Поданева1, А.А. Лукашев1, А.Ю. Мершин2, А.А. Астратьев2,
П.В. Петреков3, Е.А. Пазников3
1 ОАО «Федеральный научно-производственный центр «Алтай», г. Бийск, Россия
2 ФГУП «Специальное конструкторско-технологическое бюро «Технолог»,
г. Санкт-Петербург, Россия
3 Бийский технологический институт АлтГТУ им. И.И. Ползунова, г. Бийск, Россия
В качестве низкотемпературных отвердителей синтетических полимеров при переработке и изготовлении композиционных материалов на основе пластифицированных полиэфируретановых эластомеров широко используются динитрил-N-оксиды ароматического ряда: 1,3-динитрилоксид-2,4,6-триэтилбензол и более активный 1,3-динитрилоксид-2,4,6-триметилбензол. Сшивка полимерных цепей происходит за счет 1,3-диполярного циклоприсоединения с образованием пятичленных изоксазолиновых циклов в температурном диапазоне 35…40 С [1, 2]. В структуре поли-N-метил-5-винилтетразола аллилированного непредельные группы расположены не в основной цепи, а в наиболее доступных для отвердителя боковых тетразольных фрагментах, поэтому реакционная способность его к взаимодействию с указанными динитрилоксидами возрастает [3, 4].
Основным фактором, определяющим активность динитрил-N-оксидов, по-видимому, является пространственное экранирование реакционноспособных нитрилоксидных групп в молекуле другими заместителями. Таким образом, меняя положение и природу заместителей, можно как уменьшать, так и увеличивать скорость отверждения полимерных связующих.
В целях оценки влияния строения отвердителей на их активность в процессе образования трехмерной сетки из пластифицированного азолового полимера синтезирован ряд новых ароматических динитрил-N-оксидов с различными заместителями и изучены их свойства.
Исследованные соединения хорошо растворимы в 1,4-диоксане, ацетонитриле, этилацетате и ограниченно в бензоле, толуоле, изопропаноле, этаноле, 1,2-дихлорэтане.
Представляет интерес соотношение растворимости отверждающего агента в пластификаторе и его активности.
Растворимость полученных соединений в пластификаторе, измеренная рефрактометрическим методом при температурах приготовления композиций (Т=23 °С) и вулканизация изделий на их основе (Т=40 °С), приведена в таблице 1.
Таблица 1 – Динитрил-N-оксиды ароматического ряда различного строения
Наименование
|
Структурная формула
|
Брутто-формула
|
ММ
|
Растворимость Сm, %, при T, С
|
23
|
40
|
Tri-ethyl (TE)
2,4,6-Триэтил-1,3-бензолдинитрилоксид
|
|
C14H16N2O2
|
244,280
|
5
|
36
|
Tri-methyl (TM)
2,4,6-Триметил-1,3- бензолдинитрилоксид
|
|
C11H10N2O2
|
202,199
|
4
|
17
|
Di-methoxi (DMO)
3,6-Метокси-1,4- бензолдинитрилоксид
|
|
C10H8N2O4
|
220,170
|
4
|
15
|
Durol (Dur)
1,4-Динитрилоксид - 2,3,5,6-тетраметилбензол
|
|
C12H12N2O2
|
216,226
|
2,7
|
6,6
|
Methylene-bis-salicyloxi
(MBS)
2,2’-Метилен-бис(окси)-динитрилоксидбензола
|
|
C15H10N2O4
|
250,143
|
2,4
|
16
|
Methylene-bis-methoxi (MBM)
5,5’-Метилен-бис(2-метоксинитрилоксид
бензола)
|
|
C17H14N2O4
|
310,295
|
2
|
12
|
Methylene-bis-ethoxi (MBE)
5,5’-Метилен-бис(2-этоксинитрилоксид
бензола)
|
|
C19H18N2O4
|
338,349
|
1
|
2,5
|
Methylene-bis-propoxi (MBP)
5,5’-Метилен-бис(2-пропоксинитрилоксид
бензола)
|
|
C21H22N2O4
|
366,403
|
Н/р
|
Н/р
|
Methylene-bis-buthoxi (MBB)
5,5’-Метилен-бис(2-бутоксинитрилоксид
бензола)
|
|
C23H26N2O4
|
394,457
|
Н/р
|
Н/р
|
Как видно, наибольшей растворимостью обладает ТЕ: Cm40 °С=36 % масс., умеренная растворимость (до 10…20 % масс.) наблюдается для отвердителей ТМ, DMO, Dur, MBS и MBM (Cm40 ºС=6,6…17 % масс.), слабая – для MBE (Cm40 °С=2,5 % масс.). Отвердители MBP и MBB с большими объемными заместителями в структуре молекул нерастворимы.
В целом можно отметить, что растворимость изученных динитрил-N-оксидов в диапазоне температур 23…40 °С, учитывая их незначительную концентрацию в системе, высока (Cm23 °С>1,0 %). Поэтому можно ожидать, что исследованные отвердители в композициях будут полностью растворены, за исключением MBP и MBB.
На рисунке 1 приведены реокинетические кривые структурирования связующего (соотношение полимер–пластификатор 15/85 % масс.) в присутствии динитрил-N-оксидов различной реакционной способности (0,216 % от массы НЭТ) при Т=25 °С, снятые на ротационном вискозиметре «Brookfield» модель HBDV-II+Pro в диапазоне эффективных скоростей сдвига γ=1...5 с1.
_______________________________
Рисунок 1 – Зависимость изменения вязкости азолового связующего от времени с использованием ароматических динитрил-N-оксидов при Т=25 °С
_______________________________
Установлено, что отвердители MBS и DMO – наиболее реакционноспособные из исследованных ароматических динитрил-N-оксидов – характеризуются низким периодом индукции структурирования (гелеобразования) τинд=3…5 ч, отвердители ТМ, Dur и ТЕ – средней реакционной способностью с τинд =14…30 ч. Биядерные динитрил-N-оксиды MBM и MBE с объемными алкильными заместителями проявляют слабую активность, для них τинд≥37…40 ч, или же гелеобразования в их присутствии вовсе не наблюдается (MBP и MBB).
На рисунке 2 приведены константы скорости структурирования (гелеобразования) НЭТ при Т=25 °С в присутствии ароматических динитрил-N-оксидов (определяемые как обратная величина времени увеличения уровня динамической вязкости до 250 П).
____________________________
Рисунок 2 – Константы скорости структурирования связующего и растворимости динитрил-N-окси-дов при Т=25 C
_____________________________
Как видно, действительно, скорость структурообразования не зависит от растворимости исследованных отвердителей (см. рисунок 2, таблицу 1), важно лишь, чтобы в условиях процесса они находились в растворе.
Методом равновесного набухания исследована кинетика выхода гель-фракции Pr– связующего на основе тетразольного сополимера и параметры вулканизационной сетки – молекулярная масса среднего участка цепи между узлами пространственной сетки Мс, эффективная плотность сшивки νl/v по известным методикам [5, 6] при содержании ароматических динитрил-N-оксидов ТЕ, DMO, Dur, MBS от 0,2 до 0,4 % от массы связующего в диапазоне температур 30…60 С. Численные значения полученных кинетических характеристик процесса отверждения и пространственной сетки вулканизатов приведены в таблице 2.
80>
Достарыңызбен бөлісу: |