Мержаниан А. А. 'Ц, К38 Технология вина



бет12/44
Дата13.07.2016
өлшемі4.05 Mb.
#196186
түріУчебник
1   ...   8   9   10   11   12   13   14   15   ...   44

'■■- 101

ботке винограда, пораженного серой гнилью, когда необходимо удалить большое количество окислительных ферментов. Дози­ровки бентонита в этом случае колеблются от 1 до 3 г/л в за­висимости от количества оксидазы в сусле. Бентонит и другие дисперсные минералы сорбируют ферменты и вместе с ними оседают на дно отстойных резервуаров. Инактивации фермен­тов при этом не происходит, поэтому осветленное сусло необ­ходимо возможно быстрее и тщательнее отделять от выпавших осадков, чтобы окислительные ферменты вновь не перешли в сусло. При добавлении к суслу дисперсных минералов можно уменьшить дозировку SO2. Например, по подавлению окисли­тельных процессов в виноградном сусле 2 г/л бентонита и 60 мг/л S02 эквивалентны 100 мг/л SO2.

Внося в сусло одновременно с бентонитом небольшое коли­чество синтетических полиэлектролитов-флокулянтов, можно значительно увеличить скорость осаждения. Применение дис­персных минералов и флокулянтов особенно эффективно для ускорения осаждения наиболее мелких частиц, содержащихся в сусле. Время осветления сусла сокращается до 2—6 ч в слу­чае применения полиоксиэтилена, полиакриламида, фермент­ных препаратов. При этом обеспечивается более быстрое выв'е-дение из мутного сусла взвесей с адсорбированными на них окислительными ферментами и дикой микрофлорой, что спо­собствует улучшению качества осветленного сусла и получае­мого из него вина. Время отстаивания сокращается, а выход осветленной части сусла увеличивается, если перед отстаива­нием сусло кратковременно выдержать с коллоидным раство­ром S1O2 и желатином.

Отстаивание сусла проводят в основном в отстойниках пе­риодического действия: деревянных, железобетонных, металли­ческих. Вместимость отстойных резервуаров не должна быть очень большой, чтобы обеспечивалось достаточно быстрое их заполнение поступающим суслом, создавались благоприятные условия для процесса осаждения и упрощалось обслуживание. Рабочую вместимость каждого отстойного резервуара прини­мают обычно с таким расчетом, чтобы он заполнялся суслом за 2—3 ч.

Если осветленное сусло располагается слоем высотой Я0, то произво­дительность отстойного резервуара (в м3/ч) выразится уравнением П— =FMt, где F0площадь свободной поверхности отстойника, м2; /г0 —вы­сота слоя сусла в отстойнике, м; t — время отстаивания, ч. Поскольку про­должительность отстаивания t при заданной высоте слоя светлой жидкости /г0 зависит от скорости осаждения va (t=h0/3600v0), то Я=3600/:>о- Таким образом, производительность отстойника зависит не от его высоты в явном виде, а только от скорости осаждения взвешенных частиц и площади сво­бодной поверхности отстойника. Однако для уменьшения общей продолжи­тельности отстаивания и лучшего уплотнения выпадающих осадков жела­тельно, чтобы рабочая высота отстойных резервуаров для сусла не пре­вышала 2,5—3 м.

102





После окончание ; процесса отстаивания осветленное сусло снимают с оеадка (деканти­руют) и перекачивают в емко­сти или специальные бродиль­ные аппараты для последую­щего брожения. При этом кон­тролируют прозрачность сусла по стеклянному отрезку вино­провода и не допускают по­падания гущи в осветленное сусло.

Осветление сусла в отстой­


ных резервуарах — процесс
малопроизводительный. Ему
присущи все недостатки пери­
одических технологических про­
цессов. На крупных винзаводах
требуется большое количество
'отстойных резервуаров, услож­
няется их обслуживание, зани­
маются значительные производ­
ственные площади.

Применение отстойников-ос­ветлителей непрерывного дей- Рис 16 Схема аппарата для ос. ствия дает удовлетворительный ветления сусла в потоке:

результат При ОДНОВреМеННОЙ /-корпус; 2-нижний ввод; 3 —

обработке сусла бентонитом и ^°ея ™Га- вИ ™~bS другими дисперсными минера- ^ХТ^~Те™,, °T*;co^HPe:

ЛаМИ, Обладающими ДОСТаТОЧНО тельная коммуникация; 9 — отвод

эффективными сорбирующими осадка свойствами к взвесям.

Аппарат для осветления виноградного сусла в потоке (рис. 16) работает по принципу стесненного осаждения частиц. В нем жидкость движется снизу вверх, скорость ее меньше скорости свободного осаждения частиц. Осветление сусла в таком ап­парате проходит во взвешенной среде осадка. В нижней зоне аппарата, где концентрация взвесей значительна, образуется как бы «облако» частиц, которое способствует захвату и удер­жанию более мелких частиц, интенсифицирует их коагуляцию и увеличивает скорость осаждения суспензии.

Сусло или виноматериал, смешанные с осветляющими ве­ществами, через патрубок 2 непрерывно подают в аппарат в зону коагуляции. В аппарате происходит стесненное осажде­ние взвеси и образуется взвешенно-контактный слой осадков с границей раздела осветленной жидкости и суспензии. Проходя через этот слой, сусло осветляется и поступает в сборник 5. Избыточный осадок из взвешенно-контактного слоч отводится

103

в осадкоуплотнитель через трубу 4. После уплотнения осадок удаляют через отвод 9. Осветленное сусло непрерывно отбирают через трубу 8 и выводят из аппарата через отвод 6.

Скорость потока в аппарате устанавливают в зависимости от физических свойств осветляемого материала. По опытным данным, продолжительность процесса осветления составляет 3—4 ч, если объемная концентрация взвешенно-контактного слоя 0,148—0,156 % и скорость восходящего потока в зоне коа­гулирования 0,3—0,9 мм/с.

В результате отстаивания получают два полупродукта: ос­ветленное сусло и сусловую гущу. Осветленное сусло поступает на брожение, а сусловая гуща — в обработку. В зависимости от сорта, степени зрелости и состояния винограда (отсутствия или наличия повреждений вредителями, болезнями, гнилью и др.) содержание гущи составляет 15—25 % объема сусла, по­ступившего на отстаивание. Гущи может быть больше, если раздавливание ягод и отделение гребней проводят на дробилках ударно-центробежного типа, работающих в форсированном ре­жиме. При правильном проведении отстаивания уплотненный осадок обычно составляет 6 % объема сусла, а отношение твер­дой и жидкой фаз в гуще — 1:2.

Центрифугирование для осветления сусла перед брожением применяют значительно реже отстаивания, в основном в тех случая, когда по технологическим условиям исключается воз­можность сульфитации, например в производстве коньячных виноматериалов.

В отличие от отстаивания, при котором помимо осветления происходят ферментация и созревание сусла, центрифугирова­ние обеспечивает только отделение взвесей.

Технологически эффективное осветление сусла может быть достигнуто только при правильном выборе типа центрифуги и режима ее работы.

Наилучшие результаты получают при применении центри­фуг герметического и полузакрытого типа, работающих в атмос­фере инертных газов.

Выбирая центрифуги для осветления виноградного сусла, необходимо учитывать количество, гранулометрические харак­теристики и физические свойства взвесей и получаемых осадков. Совокупность этих факторов принято характеризовать величи­ной разделяемости гетерогенной системы Y — мерой способ­ности смеси к выделению осадка в силовом поле. Для вычисле­ния Y виноградного сусла Э. С. Гореньковым предложена сле­дующая эмпирическая формула: У = (0,17/С — 0,0025)d32, где С —содержание сахара, г на 100 мл; da — эквивалентный диа­метр частиц, мкм.

При обработке сусел с большим содержанием дисперсной фазы (сусловые гущевые осадки, сусло, полученное на шнеко-вых стекателях и прессах, с содержанием дисперсной фазы 104

больше 5—8%) между логарифмом средней скорости выхода фугата и продолжительностью центрифугирования существует прямолинейная зависимость. Полноту выхода фугата при данных условиях центрифугирования характеризует эмпири­ческий коэффициент Кг, величина которого зависит от фак­тора разделения Fr и вида обрабатываемого материала (табл. 5).

Зная величины К\ для виноградных сусел и осадков вино-материалов, можно определить количество осветленного про­дукта, получаемого в результате центрифугирования с различ­ными факторами разделения. Величина коэффициента выхода фугата для одного и того же фактора разделения зависит от вида обрабатываемого продукта. Например, при Fr = 999 величина К\ для виноградных сусел лежит в пределах 0,70—0,72.

Таблица 5

Обрабатываемый материал

Значение коэффициента К, при факторе разделения Fr

444

999

1776

2775

Сусло сорта Алиготе 0,50 0,70 0,90 1,00

Сусло сорта Кумшацкий 0,53 0,72 0,88 0,98

Осадок виноматеоиала портвейна бе- 0,70 0,78 0,88 0,95

лого


Осадок виноматериала вермута 0,66 0,77 0,87 0,94

В процессе центрифугирования виноградного сусла с боль­шим содержанием взвесей максимальный выход фугата дости­гается при Fr = 2775 и продолжительности процесса 8 мин. При меньших величинах фактора разделения полный выход фугата не обеспечивается даже в случае продолжительного ведения процесса.



Электросепарирование, или электрофлотация,— способ ос­ветления сусла в потоке, основанный на прохождении через слой сусла пузырьков водорода, образующихся в результате электролиза воды, содержащейся в сусле, при напряжении электрического тока 20—30 В. Твердые частицы, взвешен­ные в сусле, прилипают к пузырькам и всплывают вместе с ними на поверхность, образуя плотную шапку, которую уда­ляют.

Процесс осуществляют в потоке, пропуская загрязненное сусло через специальный аппарат — электросепаратор.

Электросепарация обеспечивает достаточно полное осветле­ние сусла и предохраняет его от окисления кислородом воздуха, но производительность процесса невелика.

105


ТИПОВЫЕ ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПЕРЕРАБОТКИ ВИНОГРАДА

Качество вина и эффективность винодельческого производ­ства зависят не только от применяемой технологии и режимов отдельных операций, но и от их взаимосвязи и последователь­ности по ходу производственного процесса, от применяемого технологического оборудования и его компоновки. Для каждого вида продукта эти условия определяются технологическими схемами. Помимо последовательности технологических опера­ций, через которые проходит сырье в процессе превращения его в готовый продукт, на технологической схеме указывают вспо­могательные материалы, вводимые в производство, получаемые полупродукты, оборудование, применяемое для выполнения от­дельных операций, и компоновку этого оборудования. Тех­нологические схемы непрерывно совершенствуются, в них вводятся новые процессы, более совершенное оборудова­ние, современные средства автоматического контроля и регу­лирования.

При получении виноматериалов для вина одного и того же типа могут применяться один или несколько способов и соот­ветственно одна или несколько технологических схем. В на­стоящее время разработан ряд рациональных технологических схем для производства различных вин и других продуктов ви­ноделия. Эти схемы имеют типовое аппаратурное оформление и обеспечивают переработку винограда на виноматериалы в со­ответствии с требованиями действующих технологических ин­струкций.

С технологическими схемами производства отдельных про­дуктов виноделия, их обоснованием и построением, использова­нием при проектировании предприятий винодельческой про­мышленности студенты подробно знакомятся на лабораторном практикуме по курсу технологии вина, в курсе «Основы проек­тирования предприятий винодельческой промышленности» и при выполнении курсовых и дипломных проектов.

Для переработки винограда по этим схемам применяют по­точные линии ВПЛ, на которых проводят следующие техноло­гические операции: дробление (раздавливание) ягод и отделе­ние гребней, выделение на стекателях из мезги сусла-самотека и сусла I фракции, отделение следующих фракций сусла на дожимочных прессах.

Линии ВПЛ выпускаются промышленностью в различных по назначению и производительности вариантах: ВП1Л-10К и ВПЛ-20К для переработки винограда на высококачественные белые столовые вина и шампанские виноматериалы; ВПЛ-10, ВПЛ-20МЗ, ВПЛ-ЗОЕЗ и ВПЛ-50 для белых ординарных вин; ВПКС-10А для красных столовых вин; ВПЛ-10К Для белых и красных крепленых вин,

106

ТёЩЬлогическая схема получения виноматериалов для столовых вин



Приемка винограда на переработку (взвешивание, отбор средней пробы, разгрузка в приемные бункера)

1 Раздавливание ягод с отделением гребней

I Сульфитация мезги

Красные в

иноматераалы

Белые виноматериалы

Схема 1

4

Внесение пек-



толитических

ферментных

препаратов

Брожение на мезге

4

Отделение



сброженного

сусла от мезги

Прессование

сбродившей

мезги


Схема 2

1епловая


обработка

мезги


I

4

Настаивание на мезге

4

Выделение



из мезги

сусла-самотека

4

Прессование



стекшей мезги

I

Сульфитация

сусла

4

Охлаждение сусла перед отстаиванием



I

Осветление сусла

Внесение чи­стой культуры дрожжей

4

Сбраживание сусла

I


I Схема 3

4

Выделение из мезги сусла-самотека

Выделение из

мезги сусла-самотека

I

4


Прессование стекшей мезги

4

Сульфитация сусла



Сульфитация сусла

г, 4


Внесение чистой

культуры дрож­жей



Охлаждение сусла перед отстаиванием

Сбраживание сусла в потоке

4

Экстрагирование



{несение в сусло сорбентов и флокулянтов

мезги сброженным

суслом в потоке



4

Отделение сбро­женного сусла от мезги



Осветление сусла

Внесение чистой культуры дрож­жей

4

Сбраживание сусла



Прессование сбродившей мезги

I Дображивание сусла

I Снятие с дрожжевого осадка

I Сульфитация

у Эгализация виноматериалов

107-


Технологическая схема получения виноматериалов для белых и красных крепленых вин

Приемка винограда на переработку

I Раздавливание ягод с отделением гребней

1 Сульфитация мезги


Схема 2

Схема 1

Схема 3

Внесение пектолитиче-ских ферментных пре­паратов

Внесение пектолити-ческих ферментных препаратов

I

1 Брожение на мезге

I Отделение сброжен­ного сусла от мезги

1 Прессование сбро­дившей мезги

1 Спиртование бродя­щего сусла

\ Тепловая обработка

мезги


1 Настаивание на мезге

I

Экстрагирование мезги сброженным суслом в потоке

1 Отделение сброженного сусла от мезги

Выделение из мезги сусла-самотека

1 Прессование стекшей мезги

i Сульфитация сусла

Прессование сбродив­шей мезги

1 Спиртование бродяще­го сусла

1 Внесение чистой куль­туры дрожжей

1 Сбраживание сусла в потоке

i Снятие с дрожжевого осадка

1 Сульфитация

1 Эгализация виноматериалов

Техническая характеристика линий ВПЛ



со

W

т

S

ч с из

20

75



37

70

11 076 0,3



с

и

20

75



31

40

8235 0,5



С га

30

76



50

75

13 190 0,4



5

10

75



28

35

7190 0,3



и

50

76



70

85

18 000 0,6



Производительность по вино­граду, т/ч

Максимальный выход сусла из 1 т винограда, дал Суммарная установленная мощ­ность электродвигателей, кВт Занимаемая площадь (без бун­кера-питателя), м2 Масса оборудования линии, кг Съем продукции с 1 м2 произ­водственной площади, т/ч

108

Рис. 17. Поточные линии для переработки винограда:



а — ВПЛ-20 (вариант М2); б —ВПЛ-10К; /— приемный бункер со шнековым питате­лем; 2 — дробилка-гребнеотделитель; 3 — мезгопровод; 4 — стекатель; 5 — пресс; 6 и 7 — суслосборники

При применении автоматизированных поточных линий пе­реработки винограда резко сокращаются потери сырья, так как отсутствуют переливы, повышается коэффициент загрузки обо­рудования, улучшается общая культура производства.

Компоновка поточных линий ВПЛ-20 (вариант М2) и ВПЛ-10К показана на рис. 17. Управление поточными линиями осуществляется с общего пульта. Система автоматизации обес­печивает контроль и управление работой всех машин, входящих в состав линий.

Глава 3. БРОЖЕНИЕ

Спиртовое брожение — основной технологический процесс виноделия. Вещества, образующиеся в результате спиртового брожения, сообщают продукту характерные особенности, свой­ственные сложению вкуса и букета вина. Поэтому спиртовое брожение — обязательный процесс в производстве всех вин, в том числе содержащих наибольшее количество остаточного несброженного сахара.

109 ! i I

В производстве крепленых вин сахар сбраживают частично, в производстве сухих вин — полностью. Основными правилами производства виноградных вин в нашей стране установлены обязательные минимальные нормы спирта, получаемого в ре­зультате естественного брожения: для крепких вин не менее 3 % об., для десертных — не менее 1,2 % об.

Помимо спиртового брожения, вызываемого винными дрож­жами, в виноградных винах может проходить также яблочно-молочное брожение, вызываемое молочнокислыми бактериями. не образующими летучих кислот. В результате яблочно-молоч­ного брожения яблочная кислота превращается в молочную, кислотность вина понижается, вкус его становится более гар­моничным, улучшается букет. Этот процесс желателен в мо­лодых винах, имеющих чрезмерно высокую кислотность вслед­ствие избыточного содержания в них яблочной кислоты.

СПИРТОВОЕ БРОЖЕНИЕ

Спиртовое брожение — сложный биохимический процесс раз­ложения глюкозы и фруктозы, который проходит при катали­тическом действии ферментов дрожжевых клеток. Этот процесс сопровождается выделением теплоты и характеризуется сле­дующим количественным соотношением основных продуктов:

CeHuO, = 2C8H6OH+ 2C02 -> Теплота.
1 г 0,6 мл 247 см3 0,14 ккал

(0,51 г) (0,49 г) (586,6 Дж)

Механизм спиртового брожения тесно связан с эндогенной природой бродильных ферментов, т. е. с превращением моно­сахаридов внутри дрожжевых клеток. В связи с этим скорость брожения зависит прежде всего от скорости проникновения са­хара в дрожжевые клетки, т. е. от проницаемости их цитоплаз-матических мембран.

Молекулы сахара, содержащиеся в бродящей среде, диф­фундируют за счет осмотического давления через оболочки дрожжевых клеток, затем внутри клеток эндоферменты рас­щепляют сахара и образующиеся продукты брожения осмоги-руют из клетки в среду.

Проницаемость цитоплазматических мембран дрожжевых клеток сильно возрастает с повышением температуры, при этом увеличивается энергия и скорость брожения. В пределах 10— 27 °С скорость брожения виноградного сусла прямо пропорци­ональна температуре.

Наряду с температурой на брожение влияет также состав среды, особенно концентрация спирта и других продуктов, ко­торые снижают скорость процесса.

ПО

Диффузия сахара в дрожжевые клетки и спирта из клеток в среду как веществ, хорошо растворимых, практически зави­сит только от градиента концентраций. В интервале концент­раций сахара 0—20 % осмотическое давление изменяется при­близительно пропорционально содержанию сахара в среде. Благодаря сорбции сахара дрожжевой клеткой на ее поверх­ности поддерживается достаточно высокая концентрация пи­тательных веществ, что обеспечивает хорошие условия для диффузии сахара внутрь клетки при снижении его содержания до 2—3%. При этом уровень адсорбционного равновесия за­висит от температуры: чем выше температура, тем быстрее достигается равновесное состояние.



По мере накопления спирта в среде жизнедеятельность дрожжей угнетается и процесс брожения тормозится. Из всех продуктов брожения спирт является основным, лимитирующим процесс брожения. При концентрации спирта выше 18 % об. брожение останавливается.

На ход брожения влияет также диоксид углерода, но в мень­шей мере, чем спирт. В отличие от спирта С02 плохо растворя­ется в бродящей жидкости (~2 г/л). В связи с этим он бы­стро насыщает среду и затем адсорбируется на поверхности дрожжевой клетки, образуя тесно связанный с нею газовый пу­зырек. Адсорбированный диоксид углерода препятствует по­ступлению питательных веществ в клетку и снижает скорость брожения. По достижении газовым пузырьком С02 определен­ной величины он всплывает вместе с дрожжевой клеткой и, дойдя до поверхности, сливается с газовой средой, а клетка опу­скается в бродящую жидкость, и процесс повторяется. Следова­тельно, на скорость процесса брожения влияют условия выде­ления СОг. При благоприятных условиях брожение проходит в среде с меньшей концентрацией С02 и с большей скоростью.

Скорость выделения диоксида углерода находится в зави­симости от диэлектрической проницаемости | поверхности бро­дильной емкости и взвешенных в среде частиц: чем меньше |, тем быстрее выделяется С02, который заряжен отрицательно и имеет £ = 1-

На ход брожения влияют молекулярное сродство среды к соприкасающимся с ней поверхностям, а также их микро­рельеф. Это связано с тем, что основная масса С02 выделяется путем «кипения», т. е. возникновения в жидкости газообразной фазы в виде многочисленных пузырьков. Начальная стадия этого процесса —кавитация —связана с затратой работы на преодоление сил адгезии жидкости к различным поверхностям. Скорость выделения С02 и, следовательно, скорость брожения сильно возрастают при наличии мелкодисперсной твердой фазы, образующей в среде активную поверхность десорбции, если эта фаза имеет положительный заряд, т. е. противоположный

111

заряду С02, и не смачивается вином. Аналогичное действие на скорость брожения оказывает интенсивное движение (перемеши­вание) бродящей жидкости, способствующее более быстрому удалению с поверхности клеток продуктов обмена веществ.

Кинетика спиртового брожения в общем виде подчиняется условиям реакции первого порядка. Однако применение закона мономолекулярной реакции для характеристики хода брожения виноградного сусла затруднено в связи с тем, что величина кон­станты скорости процесса существенно зависит от концентра­ции дрожжей, которая непостоянна и во время брожения изме­няется в широких пределах.

Зависимость скорости образования спирта от концентрации дрожжей, по данным Аиба, может быть описана логарифмиче­ской функцией вида dCc/d/ = umaxCAexp (—КСС), где Сс —кон­центрация спирта в бродящей среде, % об.; vm&x — максималь­ная удельная скорость образования спирта, мл/мин; Сд — кон­центрация (или масса) дрожжей; К — константа скорости процесса.

Ход процесса спиртового брожения, его кинетика определя­ются рядом факторов, которые имеют различную природу, фи­зических (температура, давление, динамический режим), хими­ческих (состав среды и его изменение в процессе брожения), биологических (раса дрожжей, концентрация и состояние дрож­жевых клеток).

Взаимодействие этих факторов весьма сложно и не всегда поддается точному учету, что затрудняет количественную ха­рактеристику процесса брожения.

ТЕХНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ВИННЫХ ДРОЖЖЕЙ

Виноградное сусло содержит большое количество различных микроорганизмов, которые попадают в него из поврежденных ягод винограда и с поверхности оборудования. Наибольшую часть естественной микрофлоры сусла составляют плесневые грибы, меньшую — дрожжи и наименьшую — бактерии. В сусле развиваются только кислотовыносливые микроорганизмы, среди которых наибольшее значение имеют дрожжи.

На виноградных ягодах и в сусле находятся дрожжи раз­личных родов и видов. В начальный период спонтанного забра-живания сусла в нем преобладают апикулятусы, в средний пе­риод— сахаромицеты (Saccharomyces), среди которых наиболь­шее количество составляют Sacch. vini и меньшее — Sacch. ovi-formis, Sacch. uvarum и др.

Дрожжи разных родов и видов размножаются с различной скоростью, имеют разную бродильную активность, спорообра-зующую способность, устойчивость к низкой или повышенной температуре. Если сусло сбраживают спонтанно на диких дрож­жах, то получаются виноматериалы с небольшим содержанием

спирта, повышенным содержанием летучих кислот и с другими недостатками.

Для исключения этих нежелательных явлений брожение проводят на чистых культурах винных дрож­жей. Чистые культуры — это дрожжи, выделенные из одной клетки и специально подобранные путем селекции для опреде­ленных типов вин — столовых, шампанских, хересных.

Чистые культуры дрожжей (ЧКД) выделяют в микробиоло­гических лабораториях, откуда они поступают на винодельче­ские заводы в стерильном состоянии: в пробирках на твердых средах, в лиофилизованном или прессованном виде. На заводах дрожжи культивируют, т.е. готовят дрожжевые разводки путем постепенного наращивания биомассы активных клеток чистой культуры в количестве, достаточном для сбраживания всего сусла или мезги, поступающих на брожение. Дрожжевую разводку готовят по утвержденной технологической инструкции на стерильном (пастеризованном) сусле в специальных дрож­жевых аппаратах — дрожжегенераторах.

В разводке, приготовленной на виноградном сусле, концен­трация дрожжевых клеток в стадии бурного брожения среды находится в пределах 100—150 млн./мл, количество почкую­щихся клеток составляет 30—50 %, мертвых — около 5 % •

В винодельческой промышленности начинают применять активные сухие дрожжи (АСД), которые получают пу­тем многостадийного культивирования на питательных средах с последующим отделением от среды, прессованием и гранули­рованием. Дрожжи высушивают до влажности 8—10 % и хра­нят в специальных упаковках, предохраняющих дрожжевые клетки от контакта с кислородом воздуха. Перед использова­нием АСД реактивируют (восстанавливают их активность) в ви­ноградном сусле, подогретом до 35—37 °С. Для брожения ви­ноградного сусла вносят АСД в количестве 1 — 1,5 г/дал. При применении АСД отсутствуют дополнительные затраты в сезон виноделия на приготовление больших количеств жидкой раз­водки чистой культуры дрожжей, забраживание сусла начина­ется раньше, обеспечивается брожение на заданной чистой куль­туре.

Готовую разводку вносят в осветленное сусло или мезгу в различном количестве в зависимости от состава сбраживае­мой среды, применяемого способа брожения и типа получае­мого вина. Для сбраживания виноградного сусла в статических условиях обычно достаточно внести 1—3% и мезги — 3—5% дрожжевой разводки по объему, что обеспечивает содержание около 2—3 млн. клеток ЧКД в 1 мл сусла. Для равномерного распределения дрожжевых клеток во всей массе сусла его после внесения разводки перемешивают.

Между отдельными микроорганизмами, в том числе между дрожжами одного и того же вида, может наблюдаться антаго-




112

113


низм. Дрожжи, имеющие более высокую скорость размноже­ния, вытесняют из среды дрожжи с меньшей скоростью размно­жения. При внесении дрожжей чистой культуры в нестерильное сусло они вытесняются дикими дрожжами, если последние имеют большую скорость размножения. В таких случаях при­менение дрожжей чистой культуры не дает желаемых резуль­татов. По этой же причине бесполезно вносить дрожжи чистой культуры в сусло, которое уже забродило на диких дрожжах. Для успешного применения чистой культуры дрожжей необхо­димо, чтобы количество дрожжевых клеток, вносимых с раз­водкой, намного превышало содержание в сусле диких дрож­жей. Если это требование не выполняется, дрожжи чистой куль­туры не успевают размножиться и практически не принимают участия в брожении, так как средой овладевают дикие дрожжи. В связи с этим необходимо по возможности наибольшее удале­ние спонтанной (дикой) микрофлоры из сусла перед внесением в него разводки чистой культуры дрожжей. Для этого исполь­зуют такие технологические приемы, как отстаивание сусла, ох­лажденного до 10 °С и ниже, сульфитацию сусла при отстаива­нии, осветление сусла центрифугированием или фильтрацией в присутствии диатомита, внесение в сусло дисперсных минера­лов и флокулянтов и др.

Применение дрожжей чистой культуры в первичном виноде­лии особенно необходимо, когда по тем или иным причинам создаются неблагоприятные условия для жизнедеятельности дрожжей, например сусло имеет чрезмерно высокую титруемую кислотность, содержит много сернистой кислоты, брожение про­ходит при низкой или высокой температуре. В таких случаях хорошие результаты получают при проведении брожения на специально подобранных расах дрожжей, приученных к соот­ветствующим условиям. Без применения чистой культуры дрож­жей брожение невозможно, если была проведена термическая обработка сусла и мезги и природные дрожжи погибли.

В настоящее время выделен ряд высокоэффективных рас винных дрожжей, хорошо адаптированных к различным небла­гоприятным условиям брожения. Так, для сбраживания сусел с высокой кислотностью рекомендованы расы Феодосия 1—19, Судак II—9, Берегово-1. К сульфитостойким относят расы Бе-регово-2, Севлюш-72, Феодосия 1—19. Высокой спиртообразую-щей способностью обладают Середне-191, Ужгород-671 и др. Для брожения в условиях низкой температуры применяются хо­лодоустойчивые расы Ленинградская, Кахури-7, Феодосия 8—15, Бордо-20, Штейнберг 1892, Судак VI-5 и др. Наиболее термо­выносливыми расами, обеспечивающими брожение при темпе­ратуре 35—37 °С, являются Ашхабадская-3, Туркестанская 36— 5, Романешты-47, Магарач-125 и др.

Некоторые виноделы рекомендуют применять смешанные куль­туры дрожжей или разводку, взятую из спонтанно бродящего сусла,

114

При этом исходят из того, что несколько различных рас дрожжей могут брдсе надежно обеспечить хороший ход брожения па всех его стадиях. Однако если взятые в смеси дрожжи находятся в антагонизме, то приме­нение смешанных культур теряет свой смысл.



При нормальном составе сусла и благоприятных темпера­турных условиях брожение может успешно проходить без при­менения дрожжей чистой культуры. Это объясняется тем, что в природе непрерывно происходит естественный отбор наибо­лее жизнеспособных дрожжей, которые быстро размножаются и обеспечивают хорошее сбраживание сахара. В ряде стран, например во Франции, Италии, Испании, чистые культуры дрожжей в первичном виноделии применяют ограниченно.



Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   ...   44




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет