Примечание: здесь и далее + маркер присутствует, - – маркер отсутствует.
Маркеры Xwmc317, Xwmc361, Xwmc332, Xgwm120, Xwmc441, Xbarc167, Xbarc1064, Xbarc1147, локализованные в длинном плече хромосомы 2В, присутствовали в геноме линии 131/7. Маркеры Xwmc592, Xwmc477, Xbarc13, Xgwm429 отсутствовали в геноме линии 131/7 (рис. 3). Таким образом, точка рекомбинации находится между маркерами Xwmc592, локус 63,9 сМ, и Xwmc441, локус 76,8 сМ, по карте сцепления (Wheat, Consensus SSR, 2004 NA-SSR-2004-2B, http://wheat.pw.usda.gov). По физической карте (Wheat, Physical, SSR, http://wheat.pw.usda.gov) точка рекомбинации располагается в районе C-2BL2-0.36.
Для подтверждения замещения хромосомы 2R на хромосому 2D использовали молекулярный STS-маркер на локус запасного белка Sec-2, картированный в коротком плече хромосомы 2R.
Рис 3. Локализация точки транслокации между хромосомой пшеницы и ржи на физической и генетической картах.
1.2.2. Выявление интрогрессии хроматина ржи в геном пшеницы. Для выявления хроматина генома ржи мы использовали рожь-специфичный ДНК-маркер (RYE) (Ribeiro-Carvalhot et. al., 1997, Katto et al., 2004). С помощью этого маркера можно идентифицировать даже небольшие интрогрессии хроматина ржи (Ribeiro-Carvalhot et. al., 1997).
1 1 2 2 3 3 4 4 5 5
Рис 4. Электрофорез продуктов ПЦР с праймерами, специфичными на генетический материал ржи (1. Аллоцитоплазматическая линия пшеницы (3.2/94), 2. Аллоцитоплазматическая линия пшеницы (8/96), 3. Тритикале 131/7, 4. Рожь ‘Вятка’ К-9367, 5. Пшеница мягкая ‘Энита’).
Как видно из рисунка 4 наличие амплификации наблюдается только у линий с наличием хроматина ржи. При этом наличие цитоплазмы ржи не оказывает никакого влияния на амплификацию. При анализе селекционных линий тритикале с использованием этого маркера была выявлена линия, предполагаемый октаплоидный амфидиплоид АД-4, с наличием амплификации по этому маркеру, однако, фенотипически являющаяся мягкой пшеницей. Молекулярно-цитогенетический анализ показал, что предполагаемый октаплоидный амфидиплоид АД-4 имел в своем генотипе 42 пшеничные хромосомы, при этом одна пара хромосом после геномной гибридизации in situ показала гибридизацию с меткой на рожь в субтеломерном участке (рис. 5).
Эти данные позволяют отнести АД-4 к мягким пшеницам (2n=42), при этом пара хромосом её в субтеломерном регионе несёт интрогреcсию генетического материала ржи. Это и обуславливает амплификацию рожь-специфичного маркера (RYE). Таким образом, на примере линии АД-4 можно видеть, что наличие амплификации рожь-специфичного маркера и маркеров на D-геном совсем не обязательно могут следовать о том, что данная форма является октаплоидной тритикале. То есть использование только молекулярных маркеров без цитогенетических оценок может привести к получению ложных результатов.
Таким образом, рожь-специфичный маркер (RYE) можно использовать для выявления истинных аллоцитоплазматических линий пшеницы с цитоплазмой ржи, не несущих в своем геноме интрогрессий хроматина ржи, а также для быстрого скрининга линий и гибридов пшеницы на наличие хроматина ржи.
Рис. 5. Геномная in situ гибридизация линии пшеницы АД-4 (Генетический материал ржи имеет желтый цвет, пшеницы – красный).
Разработанная нами методика скрининга, основанная на совместном использовании дифференциального окрашивания хромосом, геномной гибридизации in situ и анализа с использованием молекулярных ДНК маркеров, позволяет проводить эффективное выявление замещений и межгеномных транслокаций у тритикале и пшеницы.
1.3.Конвертирование ДНК-маркеров в молекулярно-цитогенетические маркеры на примере капустных, хмеля и томата.
1.3.1. Молекулярно-цитогенетическое маркирование генома В капустных с использованием геном-специфичного ДНК маркера. На растениях с относительно небольшим содержанием ДНК на геном, применение геномной гибридизации in situ во многих случаях затруднено. Это, прежде всего, связано с относительно низким количеством видоспецифичных повторяющихся последовательностей ДНК в сравнении с крупными геномами. Применение геном-специфичных повторяюшихся последовательностей ДНК для FISH-анализа может помочь в преодолении это проблемы.
Ранее Панкиным с соавторами (2006) была клонирована высокоповторяющаяся последовательность GenBR1, специфичная для генома В капустных. С использованием флуоресцентной гибридизации in situ эта последовательность нами была локализована на хромосомных препаратах видов с различным геномным составом. В результате было выявлено, что эта последовательность локализуется в прицентромерных регионах всех хромосом генома В (рис.6). Таким образом эта последовательность может служить не только молекулярным, но и цитогенетическим маркером генома В капустных.
Рис.6. Флуоресцентная гибридизация in situ маркера GenBR-1 на метафазных пластинках трех видов Brassica a. B.carinata CGN04035, b. B.nigra CGN06639, c. B.napus TAA02.
1.3.2. Хромосом-специфичные маркеры на примере половых хромосом хмеля. Хмель обыкновенный (H. lupulus) имеет 20 хромосом и характеризуется XX/XY-системой половых хромосом. Отличия в структурной организации между половыми хромосомами и аутосомами могут быть установлены при их цитогенетическом изучении. Механизм их эволюционного формирования и структурно-молекулярные различия к настоящему времени остаются мало изученными. В нашем исследовании было проведено кариотипирование мужских и женских растений хмеля с использованием методов молекулярной цитогенетики. На первом этапе были использованы цитогенетические маркеры на основе последовательностей рибосомальных генов и дифференциального DAPI-окрашивания (Рис.7). В результате использования последовательностей рибосомальных генов были четко идентифицированы три из десяти хромосом. Между мужскими и женскими генотипами различий по этим хромосомам не наблюдалось. При наложении результатов с результатами DAPI-окрашивания удалось идентифицировать половые хромосомы. При этом Х хромосома, в отличие от других хромосом, имела DAPI положительный бэнд в прицентромерной области (Рис.7). Однако, воспроизводимость такого метода окрашивания не высока.
Рис.7. Идиограмма кариотипа мужских и женских растений хмеля обыкновенного. (Верхняя часть – DAPI окрашивание, нижняя – FISH маркеры).
Для создания надежного цитогенетического маркера половых хромосом хмеля нами было проведено клонирование и изучение высокоповторяющейся субтеломерной последовательности ДНК хмеля обыкновенного. В результате рестрикционного анализа геномной ДНК хмеля была выделена, клонирована и локализована на хромосомах повторяющаяся последовательность ДНК размером 380 п.о. Эта последовательность является надежным цитогенетическим маркером половых хромосом хмеля (Рис.8).
Рис.8. Кариограмма хмеля обыкновенного (1-9 - аутосомы, 10 - половые хромосомы (X - слева и Y - справа))
1.3.3. Повторяющиеся последовательности как молекулярно-цитогенетические маркеры для изучения их хромосомной организации. Повторяющиеся последовательности ДНК занимают до 90 и более процентов генома растений. Они группируются в кластеры тандемно организованных последовательностей ДНК или диспергированы по всему геному. Значительная часть диспергированных повторов представляет собой мобильные генетические элементы. Информация о локализации ретротранспозонов на хромосомах позволит судить о том, какая часть генома может быть замаркирована с помощью молекулярных маркеров, полученных на основе последовательностей ДНК ретротранспозонов.
Нами проведена амплификация пула фрагментов гена обратной транскриптазы Ty1-copia-подобных ретротранспозонов томата, тюльпана, лука и ирисов.
С использованием метода флуоресцентной in situ гибридизации у растений с крупными геномами (тюльпан, лук, ирисы) нами выявлено относительно равномерное распределение сигнала по всей длинне хромосом, за исключением сайтов ядрышкообразующих регионов и тандемноорганизованных последовательностей ДНК. В отличие от вышеуказанных растений при флуоресцентной гибридизации in situ ретротрансозонов на пахитенные хромосомы томата выявлена их локализация в прицентромерном гетерохроматине (Рис. 9). Методом Саузерн-гибридизации показана локализация Ty1-copia-подобных ретротранспозонов в высокометилированных областях генома томата.
Рис. 9. Результат флуоресцентной in situ гибридизации на хромосомы S. lycopersicum меченным продуктом реакции ПЦР с вырожденными праймерами на участок обратной транскриптазы ретротранспозона Ty1-copia (красный) и 45S рДНК (зеленый). A – сигнал на метафазных хромосомах; Б – пахитенные хромосомы томата; В – сигнал на митотической и пахитенной 6 хромосоме томата; Г – сигнал на пахитенных хромосомах томата
1.4. Молекулярно-генетические методы анализа геномов растений для идентификации генетического материала у отдаленных гибридов.
1.4.1. Использование ISSR-PCR. Молекулярно-генетические методы анализа, основанные на проведении полимеразной цепной реакции (ПЦР), за последние 20 лет стали одними из самых популярных и используются в настоящее время для изучения многих видов организмов. Они отличаются высокой эффективностью, производительностью, хорошей воспроизводимостью и относительной экономичностью. Позволяют выявлять молекулярные маркеры на хозяйственно-ценные признаки. Все вышеперечисленные достоинства в полной мере относятся к методу ISSR-PCR, основанному на амплификации межмикросателлитных последовательностей геномной ДНК с помощью праймеров, созданных на основе того или иного микросателлита (Zietkiewicz et al., 1994). К достоинствам этого метода можно отнести и его универсальность, возможность использования на различных организмах, в том числе и на видах с мало изученными геномами.
В качестве модельного объекта в этом исследовании был использован томат. Для изучения полиморфизма межмикросателлитных последовательностей ДНК видов рода Solanum было использовано 14 ISSR-праймеров. Каждый из 14 праймеров был использован для проведения ISSR-PCR геномной ДНК каждого из пяти видов: S. cheesmanii, S. habrochaites, S. humboldtii, S. lycopersicum, S. pennellii в трёх повторностях, с трехкратным повторением. С помощью 9 из 14 ISSR-праймеров были получены четкие электрофоретические профили для каждого из пяти видов томата. Пример, полученных профилей с использованием праймеров К13 и К15, представлен на рис.10. При сравнении ISSR-профилей видов томата был выявлен высокий полиморфизм межмикросателлитных последовательностей ДНК исследованных видов томата. Наибольшее количество ISSR-фрагментов было получено при использовании праймеров К16 и К17, основанных на динуклеотидном повторе [CA], а наименьшее – при использовании праймера К15 – [GT]8YC.
Рис. 10. ISSR-профили пяти видов томата - а-б, справа налево: S. cheesmanii, S. hirsutum, S. humboldtii, S.lycopersicum, S. pennellii, полученные с использованием двух праймеров: а – К13, б – К15.
Проведение ISSR-PCR с праймером К10 на растении F1 межвидового гибрида S.lycopersicum X S. hirsutum, позволило получить электрофоретический профиль ISSR-фрагментов геномной ДНК данного гибрида, в котором присутствовали все ISSR-фрагменты, характерные для обеих родительских форм (рис.11). Однако не все ISSR-праймеры обладали способностью идентифицировать данный гибрид. ISSR-фрагменты, типичные для S. hirsutum, не всегда выявлялись в профилях проанализированного гибрида. Также наблюдалось появление фрагментов не свойственных ни для одной из родительских форм.
Рис.11. Идентификация межвидового гибрида S.lycopersicum (Mo504) X S. hirsutum с помощью ISSR-праймера К10. Справа налево: Маркер размеров, S. hirsutum, F1 L. esculentum (Mo504) X S. hirsutum, S. esculentum (Mo504).
Таким образом, с помощью ISSR-PCR была выявлена высокая степень полиморфизма межмикросателлитных последовательностей у пяти видов рода Solanum, выбранных в качестве объектов исследования в данной работе. Это позволило провести четкое генотипическое маркирование проанализированных видов томата. Так же была проведена идентификация растения, полученного при проведении межвидовой гибридизации S.lycopersicum X S. hirsutum.
Использование ISSR-PCR для мониторинга интрогрессии чужеродного хроматина на примере линий томата S.lycopersicum WSL6 и IL 6-3 с интрогрессиями в хромосоме 6. Для проверки возможности использования метода ISSR-PCR для выявления интрогресси и создания генетических карт были использованы две линии S.lycopersicum WSL6 и IL 6-3 с интрогрессиями в хромосоме 6. Используя карту интрогрессий в хромосоме 6 линий WSL6 и IL 6-3 (Weide et al., 1993), мы смогли провести физическую локализацию 13 ISSR-маркеров на хромосоме 6 S.lycopersicum в соответствии с регионами интрогрессий (рис. 12).
Рис. 12 Физическое картирование ISSR-маркеров на линиях L. esculentum WSL6 и IL 6-3 с интрогрессиями
Пять из 13 маркеров расположены в самом протяжённом регионе хромосомы, который соответствует участку интрогрессии линии WSL6, включая короткое плечо, большую часть длинного плеча и исключая только область перекрытия интрогрессии WSL6 с участком интрогрессии IL6-3 (Рис.13). В этой области также локализованы морфологические маркеры yv и m-2. Четыре маркера расположены в регионе длинного плеча хромосомы 6, который соответствует интрогрессии IL6-3, не включая область его перекрытия с интрогрессией WSL6. В данном участке также расположен ген gib-1. Ещё 4 ISSR-маркера локализованы в самой узкой области, которая расположена вокруг морфологического маркера с и соответствует участку перекрытия интрогрессий линий WSL6 и IL6-3.
Рис. 13. Физическая карта 6-й хромосомы S.lycopersicum с локализованными на ней 13 ISSR-маркерами.
Таким образом, использование карты интрогрессий в хромосоме 6 линий IL6-3 и WSL6 позволило физически локализовать 13 ISSR-последовательностей на хромосоме 6 томата. 8 из 13 последовательностей потенциально расположены вне прицентромерной области.
Использование ISSR-маркеров для создания интегрированной генетической карты групп сцепления межмикросателлитных последовательностей ДНК томата. Для создания интегрированной карты групп сцепления межмикросателлитных последовательностей ДНК томата с помощью ISSR-PCR нами была проанализирована популяция из 64 растений F2 межвидового гибрида S.lycopersicum X S. pennellii, ранее использовавшихся при создании генетической карты, основанной на AFLP маркерах. При этом были использованы праймеры ранее продемонстрировавшие полиморфизм между двумя видами томата. Данные по расщеплению ISSR-маркеров были получены для 14 праймеров. Всего при анализе исследуемой популяции было выявлено 82 ISSR-маркера. Для создания интегрированной генетической карты пригодными из них оказались 48 ISSR-маркеров, которые разделились на 11 групп сцепления, отнесённым к хромосомам 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12. Маркеров, относящихся к хромосоме 11, выявлено не было (Табл. 2).
Таблица 2
Распределение ISSR-маркеров по хромосомам томата
Хромосомы
|
ISSR-маркеры
|
1
|
К11Е1*, К17Е2, К11Р2, К18Р1, К24Р2, К27Р3
|
2
|
К12Е3, К19Е2, К27Р1, К32Р1
|
3
|
К11Е3, К12Е1, К18Е1, К27Е2, К18Е2, К18Р4, К13Р3, К24Р3
|
4
|
К17Е3, К30Е1, К12Р1, К12Р3, К30Е2
|
5
|
К15Е6, K13P4, K24E1, K26E4, K17P5
|
6
|
K12E4, K17P1, K17P3, K26P2
|
7
|
K15E5, K19E3, K13P1, K17P2, K27P2, K17E1
|
8
|
K32E1, K12P2, K18P5
|
9
| K10E1, K16E2, K16E4 |
10
|
K26E1, K26E2, K27E3, K26P3
|
11
|
маркеры не выявлены
|
12
| K15E4 |
Достарыңызбен бөлісу: |