РАЗВИТИЕ СКЛОНОВ. ПОНЯТИЕ О ПЕНЕПЛЕНАХ,
ПЕДИМЕНТАХ, ПЕДИПЛЕНАХ И ПОВЕРХНОСТЯХ ВЫРАВНИВАНИЯ
Склоновые процессы ведут к выполаживанию склонов, к сглаживанию рельефа, к плавным переходам от одних форм или элементов форм рельефа к другим. И если какой-либо участок земной поверхности более или менее продолжительное время находится в состоянии
Рис. 45. Процесс пенепленизации по В. Девису (-4) и педипленизации — по В. Пенку (Б). Стрелками показано направление, в котором идет срезание междуречий; 1, 2, 3, 4, 5,6 — последовательные стадии развития пенеплена и педнплена
тектонического покоя, выполаживание образовавшихся на нем ранее эндогенных или экзогенных склонов агентами склоновой денудации (при непременном участии выветривания) приведет к «съеданию», понижению междуречных (водораздельных) пространств и формированию на месте расчлененного участка земной поверхности невысокой, слегка волнистой равнины, которую В. Дэвис предложил назвать пенепленом (рис. 45, А).
Образование выровненных денудационных поверхностей в результате пенепленизации (выравнивания сверху) возможно, и такие поверхности в природе существуют.
Однако, по-видимому, чаще развитие склонов и образование денудационных выровненных поверхностей происходит иным путем, путем отступания склонов параллельно самим себе (рис. 45, Б). Этот процесс называется педипленизацией, а сформировавшаяся таким образом денудационная равнина — педипленом.
Рис. 46. Предгорная наклонная равнина , выработанная в коренных породах {педимент)
Простейшей формой педипленизации является образование педимента — пологонаклоненной площадки (3—5°), формирующейся в коренных породах у подножья отступающего склона. Наклон площадки обусловлен особенностями образования педимента. На каждый данный момент отступания склона его подножье защищено шлейфом склоновых отложений; на каждый данный момент остается все меньшая часть склона, которая может продолжать отступание параллельно самой себе. Вместе с тем по мере отступания склона происходит постепенное удаление материала шлейфа.
Рис. 47. Педиплен с отдельными останцами {по Н. В. Башениной)
В результате поверхность коренных пород у подножья отступающего склона постепенно обнажается. Так в ходе описанного процесса возникает наклонная выровненная поверхность, прилегающая к подножью склона, т. е. педимент (рис. 46). Формирование системы педиментов в виде «предгорной лестницы» в горах впервые описано В. Пенком, на равнинах — Л. Кингом.
Склоны какой-либо возвышенности или горы отступают не только каждый параллельно себе, но и навстречу друг другу. Благодаря встречному перемещению склонов происходит как бы «оседание» горного рельефа со всех сторон. В результате педименты сливаются в единую выровненную поверхность — педиплен (рис. 47).
Л. Кинг, внесший особенно большой вклад в изучение процессов и результатов педипленизации, считает, что наиболее благоприятен для образования педипленов полупустынный климат. R условиях полупустынь главными факторами формирования педипленов, по Кингу, являются ливневый снос со склонов, а также интенсивное физическое выветривание и гравитационные процессы — обвалы, осыпи и др.
Н. В. Батенина и М. В. Пиотровский, в целом разделяя взгляды Л. Кинга, отмечают, однако, что педипленизация, как и пенепленизация, возможны и в других климатических зонах, только в каждой из них эти процессы имеют свои особенности.
Оптимальные условия для формирования пенепленов имеются на платформах со спокойным тектоническим режимом и умеренным гумидным климатом, например в центральной и северной частях Русской равнины, в юго-западной и центральной частях США. Для этих областей характерны длинные и пологие склоны,
Рис. 48. Педимент с останцовыми столовыми горами. Берег Кара-Богаз-Гола <по Н. И. Андрусову)
здесь зачастую очень трудно или даже невозможно отграничить склоны с преобладанием смыва или аккумуляции. В условиях более континентального гумидного климата Канады и Сибири развитие склонов идет по типу педиментов главным образом под воздействием таких процессов, как дефлюкация и солифлюкация. «Умеряющее» действие на развитие склонов оказывает таежная растительность. В результате процесс педипленизации протекает медленно и в настоящее время в основном находится на стадии образования педиментов.
В условиях аридного полупустынного климата развитие склонов сначала происходит преимущественно путем отступания склонов и формирования педиментов и останцовых гор (рис. 48). Последние вообще характерны для областей педипленизации, причем далеко не всегда останцовые или «островные» горы связаны с препариров-кой более стойких пород. Сама сущность процесса педипленизации обусловливает неизбежность их образования даже при однородном геологическом строении.
По мере развития педиментов в полупустынных областях начиняет сказываться засушливость климата: реки и временные водотоки при малом количестве осадков не в состоянии выносить за пределы области поступающий со склонов материал. Долины рек и крупных понижений заполняются наносами, образуются обширные и мощные накопления склоновых отложений, над которыми возвышаются отдельные останцовые горы.
В пустынях также, и даже в большей степени, чем в полупустынях, главным процессом выравнивания является педипленизация. Сначала формируются педименты, причем обычно более круто наклоненные, чем педименты гумидных областей. Педименты сливаются и формируется педиплен, осложненный крутосклонными, резко очерченными останцовыми горами. При резко выраженной сухости климата, а также при благоприятных геологических условиях образуются огромные скопления грубообломочного материала, под которым педименты оказываются погребенными. Формируются так называемые каменистые пустыни, очень ярко представленные, например, в Сахаре, в Ливийской пустыне, в Западной Австралии и в Большом бассейне на западе США.
Во влажных тропиках, где широко развита тропическая солифлюкция, выполаживание и последующее выравнивание рельефа идет одновременно и по пути пенепленизации и по пути педипленизации. Огромное количество влаги переувлажняет грунт, представленный на значительных пространствах глинистыми продуктами латеритного типа выветривания. Переувлажненные массы материала сползают вниз. Это приводит к оплыванию и «растеканию» верхних участков склонов, следствием чего является общее снижение рельефа — пенепленизация. Одновременно на крутых в исходном положении склонах энергично протекает педипленизация. Н. В. Башенина отмечает, что при этом важную роль играет избыточное увлажнение подошвы склона, большее, чем на других участках, которое создает эффект «подкопа» под склон. Нарушение равновесия в нижней части склона передается затем на более высокие его части. Склоны в таких условиях отступают особенно быстро. Островные горы, столь характерные для тропических денудационных равнин, здесь вовсе не обязательно реликтовые формы рельефа. Наоборот, островные горы и педиплены влажных тропиков в большинстве случаев образования, активно формирующиеся в наше время.
Наконец, в условиях арктического и субарктического климата главным механизмом образования поверхностей выравнивания является, по-видимому, педипленизация. Морозное выветривание и солифлюкция, а также нивальные процессы (геоморфологическая деятельность снежников) обусловливают быстрое отступание склонов, образование педиментов, а затем за счет слияния последних — и педиплена. Результатом педипленизации в высоких горах Арктики и Субарктики (на так называемых гольцах1) являются «гольцовые террасы» — площадки, выработанные в скальных породах,, нередко образующие концентрические системы на склонах гольцов. «Террасы» обычно образуются применительно к местным базисам денудации, которыми для нивальных процессов всегда служат перегибы склона от более крутого участка к более пологому. Здесь создаются условия для значительного накопления снега, а это благоприятствует интенсивной деятельности морозного выветривания, нивальных и солифлюкционных процессов.
Следовательно, для образования педипленов, представляющих собой конечный результат развития склонов в условиях тектонического покоя, наиболее благоприятны области с резкими климатическими контрастами — пустыни и полупустыни, арктическая и субарктическая зоны, а также области умеренной зоны с резко континентальным климатом. В областях влажного и более равномерного умеренного климата, как и в гумидных областях тропической зоны, выравнивание идет примерно при равном участии пенепленизации и педипленизации.
Образование педиментов, педипленов и пенепленов возможно только в условиях нисходящего развития рельефа, т. е. в условиях преобладания экзогенных процессов над эндогенными. При этом происходит общее уменьшение относительных высот и выполаживание склонов. При восходящем развитии рельефа, т. е. при преобладании эндогенных процессов над экзогенными, склоны вновь становятся более крутыми, а образовавшиеся выровненные поверхности испытывают поднятие и в течение какого-то времени, продолжительность которого определяется как площадью выровненной поверхности, так и интенсивностью последующих денудационных процессов, могут сохраняться как реликтовые формы рельефа. При неоднократной смене этапов нисходящего и восходящего развития рельефа в горных странах образуется ряд денудационных уровней, располагающихся в виде ступеней или ярусов на различных высотах. Они получили название поверхностей выравнивания. Каждая в отдельности поверхность выравнивания может оказаться не только поднятой, но и деформированной в результате складчатых или разрывных тектонических движений. В платформенных странах такие деформации более редки, и, как отмечается, в частности, Л. Кингом, денудационные уровни могут сохранять свои высотные отметки на очень большом протяжении. На Бразильском щите и на Африканской платформе Л. Кинг выделяет пять ярусов выровненных поверхностей, каждая из которых занимает значительные площадки и находится в пределах этих площадей на близких абсолютных высотах.
Примером поверхности выравнивания со складчато-глыбовой деформацией может служить среднеплиоценовая (предакчагыльская) поверхность выравнивания Большого Кавказа, которая ближе
к оси свода Большого Кавказа поднята на 1000 и более метров, а в периферийной части располагается на абсолютных высотах 300—400 м.
1 Гольцы — оголенные скалистые вершины, поднимающиеся выше границы, леса и зоны альпийских лугов.
ГЛАВА 14. ФЛЮВИАЛЬНЫЕ ПРОЦЕССЫ И ФОРМЫ
Поверхностные текучие воды — один из важнейших факторов преобразования рельефа Земли. Совокупность геоморфологических процессов, осуществляемых текучими водами, получила наименование флювиальных. Строго говоря, описанный выше делювиальный процесс так же, как и микросели, следует относить к флювиальным процессам. Поэтому следует оговориться: в данной главе термин «флювиальные процессы» мы будем употреблять в более узком смысле, имея в виду те процессы и явления, которые осуществляются линейными потоками движущейся воды, или водотоками.
НЕКОТОРЫЕ ОБЩИЕ ЗАКОНОМЕРНОСТИ РАБОТЫ ВОДОТОКОВ
Водотоки или, как их еще можно назвать, русловые потоки, производят разрушительную работу — эрозию перенос материала и его аккумуляцию и создают выработанные (эрозионные) и аккумулятивные формы рельефа. Те и другие теснейшим образом связаны друг с другом, так как то, что было унесено водой в одном месте, откладывается где-либо в другом. Размыв и аккумуляция материала часто сменяют друг друга во времени и пространстве, поэтому не существует геоморфологических комплексов, где были бы развиты исключительно формы одного из этих двух генетических типов. Можно только различать области преобладающей эрозии и преобладающей аккумуляции. Однако на суше эрозионные формы рельефа пользуются большим развитием и распространением, чем аккумулятивные. Обусловлено это тем, что значительная часть обломочного материала, переносимого постоянными и временными водотоками, выносится в моря и океаны и откладывается на дне, образуя толщи морских осадочных пород.
Эрозионная работа водотока осуществляется за счет живой силы потока, корразии (воздействия на дно и берега влекомыми водным потоком обломками) и химического воздействия на породы, слагающие дно и берега реки.
Наибольшее значение имеет живая сила, или энергия потока, которая может быть выражена формулой
F=mv2/2
где F — энергия потока, m — масса воды, а — скорость течения.
Следует отметить, что масса воды пропорциональна расходу потока, что же касается скорости течения, то она находит выражение в формуле Шези:
v-C √Pi
где С — коэффициент, зависящий от шероховатости русла, R — гидравлический радиус (отношение площади живого сечения водотока к смоченному периметру русла), i — уклон. Таким образом, чем многоводнее поток и круче уклон, тем больше его живая сила и эродирующая способность. Однако поток будет эродировать лишь в том случае, если не вся живая сила текучей воды расходуется на перенос твердого материала и на преодоление сопротивления.
В противном случае в русле потока будет происходить аккумуляция.
В эрозионной работе водотоков различают донную эрозию, направленную на углубление (врезание) русла водотока, и боковую эрозию, ведущую к расширению вреза в стороны. В работе любого водотока почти всегда можно обнаружить признаки обоих видов эрозии. Однако интенсивность их будет меняться в зависимости от уклона русла, геологического строения территории, по которой протекает водоток, стадии развития водотока (его возраста) и ряда других причин. Преобладание того или иного вида эрозии накладывает отпечаток, прежде всего на морфологию (форму) долин русловых потоков. Узкие, глубокие и относительно спрямленные долины свидетельствуют об интенсивном врезании текущих по ним водотоков. Напротив, широкие, плоскодонные долины с прихотливо извивающимися руслами водотоков говорят о преобладании боковой эрозии.
Ширина долины водотока зависит от его величины, состава пород, прорезаемых водотоком, уклона местности и ряда других факторов. Углубление русла водотока также происходит не беспредельно. Оно ограничивается, прежде всего, уровнем водного бассейна (озера, моря), куда впадает водоток. Этот уровень называется базисом эрозии. Общим базисом эрозии для русловых водотоков является уровень Мирового океана. Наряду с ним различают местные базисы эрозии, которые могут располагаться на любой высоте. Возникновение местных базисов эрозии чаще всего определяется геологическим строением ложа (русла) потока. Выходы прочных пород, пересекающих русло, неизбежно вызывают замедление врезания, и на каком-то отрезке времени профиль русла на участке выше этого выхода будет приспосабливаться к такому временному базису.
Поскольку уровень воды в реке является базисом эрозии впадающих в него притоков, то местным базисом эрозии также часто называют уровень дна долины по отношению к прилегающей поверхности водосбора, который она дренирует.
Выше базиса эрозии водоток будет врезаться до тех пор, пока не сформирует профиль, в каждой точке которого живая сила потока окажется уравновешенной сопротивлением подстилающих пород размыву, и транспортирующая способность потока окажется выровненной по всей его длине. Такой профиль называется выработанным продольным профилем или профилем равновесия. Идеальный профиль равновесия (плавная вогнутая кривая, рис. 49, /), может быть выработан только при определенных условиях: 1)4гри однородном составе пород, размываемых водотоком на всем его протяжении, и 2) при постепенном увеличении количества воды по направлению от истока к устью. В природной обстановке поверхность, по которой течет водоток, обычно сложена породами разного состава, а, следовательно, и разной устойчивости к размыву. Породы более податливые размываются легче, менее податливые задерживают глубинную эрозию. В таком случае продольный про филь водотока приобретает вид сложной кривой, характеризующейся
Рис. 49. Профили равновесия рек:1- (АВС) – идеальный, выработанный в однородных отложениях; II (А1, В1, С1) – ступенчатый, сформированный в породах различной стойкости
| чередованием участков с разными уклонами (рис. 49, //). Однако даже тогда, когда водоток смог бы выработать профиль равновесия, он не представлял бы плавную кривую. Обусловлено это тем, что, во-первых, равновесие между живой силой потока и сопротивлением горных пород размыву для разных пород будет достигнуто при разных уклонах; во-вторых, изменение водности потока, а, следовательно, и его живой силы происходит не постепенно, а скачками. Скачки обусловлены впадением крупных притоков.
Таким образом, в процессе врезания русла продольный профиль водотока должен проходить несколько стадий, а именно: стадию выработанного профиля; стадию выработанного профиля; стадию предельного профиля. Под последним понимается такой профиль, когда в любой точке русла не происходит ни врезания, ни аккумуляции, а вся энергия
порт. Это состояние теоретически может быть достигнуто каждым водотоком, однако сложность и изменчивость географических и геологических условий, в которых происходит выработка русла, практически делает недостижимым такое состояние.
Невыработанный продольный профиль потока характеризуется наличием водопадов, порогов, быстрин.
Водопадом называют место, где ложе потока образует уступ, с которого вода падает вниз. Различают несколько видов водопадов: 1) ниагарский, когда масса воды низвергается широким фронтом, а его ширина равна или больше высоты; 2) иосемитский, или каскадный — вода падает сравнительно узкой струей иногда с громадной высоты (водопад Энджей в Венесуэле имеет высоту 980 м), причем струя нередко разбивается на ряд каскадов, соответствующих отдельным уступам; 3) карельский, или падун, — крутой (до 40°), но не отвесный участок русла (например, водопад Иматра на реке Вуоксе). Ряд уступов, образующих серию небольших водопадов, называют катарактами, небольшие положительные неровности русла,— порогами.
Участки русла с более крутым падением и более высокими скоростями течения получили название быстрин.
Генезис уступов в продольном профиле потоков может быть различным: либо они связаны с неровностями «первичного» рельефа, генезис которых также может быть различным, либо с препа-рировкой стойких пород (в результате глубинной эрозии потока или роста тектонической структуры на его пути), либо с загромождением русла обвальными массами или выносами материала из боковых долин.
Характеризуя общие закономерности работы водотоков, следует сказать о регрессивной эрозии, в результате которой водотоки, заложившиеся на склонах речных долин, имеют тенденцию продвигаться своими вершинами в глубь междуречий.
Общей особенностью эрозионной работы водотоков является ее избирательный, селективный характер. Вода при выработке русла как бы выявляет наиболее податливые для врезания участки, приспосабливаясь к выходам более легко размываемых пород или к тем участкам, где сопротивляемость пород ослаблена по тектоническим причинам: к осевым зонам складок, к тектоническим трещинам, разломам, зонам дробления пород.
Материал, полученный в результате эрозионной работы постоянных водотоков, переносится вниз по течению. Транспортировка его осуществляется различными способами: 1) волочением обломков по дну, 2) переносом мелких частиц во взвешенном состоянии, 3) в растворенном виде, 4) в виде обломков, вмерзших в лед. Состав обломочного материала и его соотношение с веществами, находящимися в растворенном состоянии, зависит от характера водотока (равнинный или горный водоток), состава пород, слагающих бассейн руслового потока, от климата и источника питания водотока. Несмотря на слабую минерализацию вод подавляющего числа постоянных водотоков (рек), перенос ими растворенных веществ исчисляется миллионами и десятками миллионов тонн. Так, река Енисей ежегодно выносит в море 30 млн. т растворенных веществ, Волга — 46,5 млн. т и т. д. Взвешенный материал переносится реками также в огромном количестве. Тот же Енисей ежегодно выносит в море около 12 млн. т взвесей, Нил — 88 млн. т, Инд — 400 млн. т и т. д.
Движение донных наносов находится в строгой зависимости от скорости течения.
Максимальная масса частицы, которую может переносить поток, пропорциональна шестой степени скорости течения. Эта зависимость выражается формулой Эри:
Pm =Av6
где Рт—масса частицы, А — коэффициент, зависящий от уклона дна, формы частицы, ее массы и глубины потока, v — скорость течения.
Эта зависимость дает возможность объяснить большую разницу в величине обломков, переносимых горными и равнинными реками или одной и той же рекой в межень и в половодье, когда с увеличением массы воды увеличивается и скорость ее течения. Отложения, формируемые постоянными водными потоками (реками), называются аллювиальными или просто аллювием. Аллювий заметно отличается от других генетических типов континентальных отложений (склоновых, ледниковых и др.) прежде всего сортированностью и окатанностью обломков. Сортировка и окатывание обломочного материала, слагающего аллювий, происходит во время его транспортировки и начинается сразу, как только обломки попадают в водный поток. Окатывание обломков происходит вследствие ударов и трения их друг о друга, а также о дно и берега водотока. В результате неокатанные обломки становятся окатанными: глыбы превращаются в валуны, щебень — в гальку, дресва— в гравий. В процессе переноса обломки не только окатываются, но и истираются. Поэтому с течением времени валуны переходят в гальку, галька — в гравий, гравий в песок. Следовательно, вниз по течению аллювиальные отложения становятся все более и более мелкозернистыми, если в описанный процесс не вмешиваются посторонние факторы — поступление крупнообломочного материала в результате обвалов берегов, выноса временных водотоков и т. п. Меняется вниз по течению и состав аллювия. Происходит это вследствие того, что менее прочные минералы и породы истираются быстрее, чем более прочные, а также за счет воздействия воды на растворимые породы и минералы. В процессе транспортировки происходит сортировка обломков по массе и величине.
РАБОТА ВРЕМЕННЫХ ВОДОТОКОВ
И СОЗДАВАЕМЫЕ ИМИ ФОРМЫ РЕЛЬЕФА
Исходная форма временно действующих водотоков — эрозионная борозда, возникающая на делювиальных склонах при переходе плоскостного смыва в линейный. Глубина борозд от 3 до 30 см, ширина равна или немного превосходит глубину. Поперечный профиль эрозионных борозд имеет V-образную или ящикообразную форму. Стенки борозд крутые, часто отвесные. После прекращения стока склоны быстро выполаживаются, ширина борозд увеличивается. Обычно борозды, располагаясь в нескольких метрах, друг от друга, образуют разветвленные системы. Глубина и морфологическая выраженность борозд вниз по склону постепенно увеличивается по мере увеличения количества стекающей воды (рис. 50).
На распаханных склонах и склонах с разреженным растительным покровом борозды с течением времени превращаются в эрозионные рытвины (промоины), глубина которых может достигать 1,0—2,0 м, ширина — 2,0—2,5 м. Склоны рытвин также характеризуются большой крутизной, местами они отвесные, поперечный профиль их чаще всего V-образный.
Рис. 50. Генетический ряд флювиальных форм равнинных территорий: А — эрозионные борозды; Б — эрозионные рытвины (промоины); В — овраги; Г—балка; Д — речная долина: ; — аллювий; 2 — балочный аллювий; 3 — обвально-осыпные образования; 4 — делювий; 5 —размеры форм; Г — тальвег временного водотока; Р — русло реки; П — пойма; НПТ - надпойменные террасы
Однако не каждая эрозионная борозда превращается в промоину. Для образования последней нужен более мощный водоток, а, следовательно, и большая площадь водосбора. Поэтому рытвины встречаются на склонах значительно реже эрозионных борозд и обычно отстоят друг от друга на десятки метров.
Эрозионные, борозды и рытвины в легко поддающихся размыву породах (песок, суглинок, лёсс и др.) могут образоваться в течение одного ливня или за несколько дней весеннего снеготаяния.
В дальнейшем рытвины служат коллектором для дождевых и талых вод. При достаточном водосборе часть рытвин, углубляясь и расширяясь в процессе вреза, постепенно превращается в овраги (рис. 50). Глубина оврагов 10—20 м, но может достигать 80 м, ширина (от бровки до бровки) 50 и более метров. Склоны оврагов крутые, часто отвесные. Поперечный профиль оврагов V-образный. Иногда овраги характеризуются плоским дном, ширина которого не превышает нескольких метров. Овраг отличается от рытвины не только своими размерами, но и тем, что он имеет свой собственный продольный профиль, отличный от профиля склона, который он прорезает. Продольный профиль рытвины, как правило, повторяет продольный профиль склона, хотя и в несколько сглаженном виде (рис. 51).
Овраг — активная эрозионная форма. Наиболее подвижной является его вершина, которая в результате регрессивной (пятящейся) эрозии может выйти за пределы склона, на котором возник овраг, я продвинуться далеко в пределы междуречий. Поэтому овраги характеризуются значительной длиной, исчисляемой сотнями метров и даже километрами.
Растущая вершина оврага может иметь различный вид. Часто овраг начинается сразу отвесным уступом — вершинным перепадом— высотой 1,0—3,0 м, со всех сторон окруженным пологонаклоненной к нему поверхностью. Иногда в вершинах оврагов наблюдаются нечетко выраженные в рельефе понижения, имеющие в плане эллипсовидную, округлую или (часто) округло-лопастную форму. Такие формы рельефа называют водосборными понижениями. Иногда выше вершины оврага располагаются слабо углубленные (1,0—3,0 м), линейно вытянутые понижения, имеющие корытообразный поперечный профиль и задернованные пологие склоны, которые без четко выраженных бровок переходят в поверхность междуречий. Такие формы рельефа получили название ложбин. Заканчиваются ложбины едва заметными в рельефе безрусельными понижениями типа деллей. Их называют еще потяжинами. На топографических картах, даже крупномасштабных, потяжины, как правило, не находят отображения, но хорошо видны на крупно-
Рис. 51. Продольный профиль рытвины (А) и оврага (Б):
1 — породы, слагающие склон; 2 — аллювиальные отложения поймы реки; 3 —
продольные профили рытвины и оврага
масштабных аэрофотоснимках, особенно на пашнях и участках с разреженным растительным покровом. Ложбины, с привязанными к ним потяжинами, в значительном большинстве случаев являются не следствием развития оврагов, а причиной их возникновения. Поэтому овраги, заложившиеся по ранее существовавшим эрозионным формам, называются донными, вторичными или вложенными оврагами, а возникшие на склонах речных долин и развившиеся из более мелких эрозионных форм,— береговыми или первичными.
С ростом оврага в длину и выработкой продольного профиля эрозионная сила стекающей воды уменьшается. Склоны оврага выполаживаются, на них появляется растительность. Расширяется дно оврага как за счет продолжающейся боковой эрозии, так и за счет отступания склонов в результате склоновых процессов. Овраг превращается в балку. Переход оврага в балку совершается не сразу на всем его протяжении. Процесс этот начинается с нижней, наиболее древней части оврага и постепенно распространяется вверх.
В дно балки в дальнейшем может снова врезаться овраг. При неоднократном врезании донных оврагов в балке образуются площадки-ступени, сложенные балочным аллювием, — балочные террасы.
Овражный и балочный аллювий отличается низкой степенью сортировки материала. Обычно наиболее грубый материал приурочен к нижней части разреза, более тонкий к верхней части. Однако и тот и другой отсортированы плохо, песчано-суглинистый материал «засорен» щебнем и плохо окатанными валунами, слоистость грубая и не всегда четко выражена.
Выносимый из оврагов и балок материал, если он не уносится рекой, откладывается в устьях, образуя конусы выноса. Материал, слагающий конусы выноса временных водотоков, называется пролювием. Состав пролювия зависит от характера осадков, слагающих склон, прорезаемый оврагом или балкой, стадии развития оврага и характера стока дождевых и талых вод. В целом, для него характерна плохая сортировка материала, слабая окатанность обломков, уменьшение размера частиц от вершины конуса выноса к его основанию и от его осевой линии к краям.
Овражная эрозия — природное бедствие, наносящее большой ущерб народному хозяйству. Рост оврагов уменьшает площадь угодий, пригодных для земледелия. Известно немало примеров превращения ранее богатых пахотных земель в непригодные для земледелия, изборожденные оврагами площади.
Скорость овражной эрозии очень большая. На Нижнем Дону, например, скорость роста оврагов составляет в среднем 1—1,5 м в год, на Ставрополье (Северный Кавказ) — до 3 м в год. Исследования Б. Ф. Косова показали, что современные физико-географические условия тех районов, для которых характерна густая овражная сеть (Черноземный центр европейской части СССР, Ставрополье, Приволжская возвышенность, Средний запад США и многие другие), в целом неблагоприятны для развития оврагов. Овражная эрозия здесь порождена хозяйственной деятельностью человека: интенсивной распаханностью, неправильными севооборотами, неумеренным выпасом скота. Нередко овраги зарождаются на склонах по колеям грунтовых дорог.
Следующей стадией развития эрозионных форм, создаваемых временными водотоками, является речная долина с постоянным водотоком. Все более углубляющаяся эрозионная форма может достигнуть уровня грунтовых вод, которые дают начало речке.
Однако в описанном генетическом ряду: эрозионная борозда — рытвина — овраг—балка — речная долина — вовсе не обязателен переход одних форм в другие или возникновение одних форм из других. Выше уже говорилось, что не каждая эрозионная борозда превращается в рытвину и не каждая рытвина — в овраг. Овраг еще в период энергичной глубинной эрозии может врезаться до уровня грунтовых вод и, минуя балочную стадию, превратиться в долину ручья с постоянным водотоком. Точно так же не каждая балка может превратиться в речную долину, и не каждая балка в своем развитии проходила овражную стадию. Так, в условиях гумидного климата на территориях, покрытых лесом, многие эрозионные формы типа балок никогда не были оврагами и формировались изначально по типу балок или ложбин.
Определенную специфику имеет деятельность временных водотоков в горах. В горах в верховьях водотоков обычно образуются четко выраженные в рельефе водосборные воронки — углубления в виде амфитеатров, склоны которых прорезаны эрозионными бороздами и рытвинами, ветвящимися сверху и сходящимися к основанию воронки, откуда начинается канал стока. Последний представляет собой тянущуюся вниз по склону глубокую не узкую рытвину овражного типа с V-образным поперечным сечением. У нижнего конца канала стока формируется конус выноса (рис. 52). Значительная крутизна продольных профилей и большие перепады
Рис. 52. Конус выноса временного горного водотока
высот между (верховьями и устьями обусловливают интенсивную разрушительную работу временных потоков гор.
Особенно большую работу временные горные водотоки осуществляют в условиях жаркого и сухого климата. Здесь на склонах, лишенных растительного покрова, процессы выветривания протекают очень интенсивно. Этому в значительной мере способствует удаление рыхлых продуктов выветривания с крутых склонов гор.
Скопившиеся в нижних частях склонов и в понижениях продукты выветривания большую часть года остаются сухими. Во время сильных ливней (свойственных аридным областям) или интенсивного весеннего снеготаяния большие массы быстро текущей с гор воды захватывают накопившиеся продукты выветривания и превращаются в грязекаменные 'потоки, называемые селями'. Сели — грозное явление природы, с которым трудно бороться даже при использовании современных технических средств. Нередко сели наносят большой ущерб населению, сельскохозяйственным
1 В Альпах грязекаменные потоки называются мурами.
Угодьем, промышленным и иным объектам, расположенным в селеопасных районах.
Временные водотоки, зарождающиеся на склонах гор аридных стран, при выходе из гор образуют обширные пролювиальные равнины, окаймляющие подножья гор). Равнины формируются за счет слияния многочисленных конусов выноса и имеют обычно волнистый продольный профиль (вдоль подножья гор). Состав пролювия и распределение в нем материала зависит от тех же факторов, которые определяют строение конусов выноса оврагов.
Если временные горные водотоки впадают в реку, их конусы выноса способны оттеснить или даже перегородить долину реки, образовав временную плотину. Прорыв такой плотины скопившейся выше по течению водой может привести к возникновению селя в долине реки.
Подрезанные рекой конусы выноса временных водотоков образуют в долинах горных рек псевдотеррасы, которые морфологически похожи на настоящие речные террасы. Отличаются от них строением и составом слагающего их материала. Существенной особенностью псевдотеррас является их невыдержанность по простиранию и значительные колебания относительных высот на коротких расстояниях.
РАБОТА РЕК. РЕЧНЫЕ ДОЛИНЫ
Постоянные водотоки — реки — в процессе своей деятельности вырабатывают линейные отрицательные формы рельефа, называемые речными долинами. Основные элементы речной долины — русло, пойма, речные террасы.
Русло реки — наиболее углубленная часть речной долины, по которой протекает речной поток в межень. Русла рек различаются по ширине и морфологии в плане. Однако в их строении имеется
и целый ряд общих черт. В русле каждой реки наблюдаются перекаты и плёсы, чередование которых вдоль течения реки нарушает равномерность уклона речного дна. Типичный для равнинной реки перекат — большая песчаная гряда, пересекающая русло под углом 20—30° (рис. 53). Гряда асимметрична: склон ее, обращенный против течения, отлогий, склон, совпадающий с направлением течения,— крутой (15—30°). Крутой склон называется подвальем. Примыкающие к берегам и возвышающиеся над меженным уровнем расширенные части гряды переката называются побочнями; тот из них, который расположен ниже по течению, называете?!
нижним побочнем, противоположный — верхним..
Глубокая часть русла у противоположного побочню берега.называется плёсовой лощиной, или плёсом, а седловина между побочнями — корытом переката. Корыто переката обычно ориентировано
1 Межень — самый низкий уровень воды в реке, наступающий летом после полного спада весеннего половодья.
под углом (от 20 до 50°) к продольной оси русла, и меженный поток реки, огибая нижний побочень, переваливает на участке переката от одного берега к другому. Так же ведет себя и стрежень 1 реки.
Кроме описанной простой формы переката встречаются и другие, в том числе перекаты-россыпи — сплошные обмеления русла без отчетливо выраженных побочней. У меандрирующих рек2, или рек с излучинами, плёсы приурочены к вогнутым участкам берега,
1 Стрежень — линия наибольших поверхностных скоростей течения.
2 Меандры (по названию извилистой реки Меандр в Малой Азии) — изгибы,
образованные рекой.
перекаты пересекают ось реки под острым углом от выпуклого участка берега одной излучины к выпуклому участку берега нижележащей по течению излучины. Перекаты располагаются, следовательно, в тех местах, где русло имеет сравнительно малую кривизну, меняющую свой знак на обратный. Самая глубокая часть плёса и самая мелкая часть переката несколько сдвинуты вниз по течению относительно точек наибольшей и наименьшей кривизны русла (рис. 54).
Большинство перекатов перемещается вниз по течению реки. Перемещение их происходит преимущественно во время половодья со скоростью от нескольких дециметров до нескольких сотен метров в год. Перемещаясь вниз по течению, побочни перекатов вызывают местный размыв
противоположного берега. У больших равнинных рек при прохождении побочня переката противоположный берег может отступить на 100 и белее метров.
Аллювий, слагающий перекаты, характеризуется довольно хорошей сортировкой и четкой косой слоистостью. Аллювий плёсов менее сортирован. В основании аллювиальных отложений плёсов часто можно наблюдать базальную (т. е. лежащую в основании аллювиальной серии отложений) фацию аллювия, представленную крупнообломочным материалом. О формировании этой фации аллювия несколько подробнее будет сказано ниже.
Рис. 54. Распределение плёсов и перекатов у меандрирующих рек: а — поверхность побочней, возвышающихся над неженным уровнем воды; б — тела перекатов; в — плёсовые лощины (густота штриховки пропорциональна глубине); 0, I, 2,— изобаты
В руслах рек часто встречаются и такие формы рельефа, как острова. Разделение (фуркация) русла и образование островов обычно служит признаком повышенной аккумуляции на данном участке реки несомого ею обломочного материала. Особенно много островов, делящих русло на множество рукавов, наблюдается: а) в дельтах рек, б) при выходе горных рек на равнину, в) в местах пересечения рекой отрицательных геологических структур, испытывающих погружение в настоящее время, г) в межгорных впадинах, расположенных между поднимающимися хребтами. Во всех этих случаях аккумуляция материала является следствием падения скоростей течения в связи с уменьшением уклонов. Большинство речных островов имеет высоту, не превышающую высоты поймы, и затопляется в половодье.
Общая схема образования аккумулятивного острова такова: в стрежневой зоне реки удельный расход наносов обычно максимальный, и поэтому при общем замедлении скорости течения (в результате подпора или уменьшения уклона) интенсивность аккумуляции здесь больше, чем у берегов. На стрежне реки вырастает осерёдок — не закрепленная растительностью отмель, лишь немного поднимающаяся над уровнем межени. Появление осерёдка приводит к разделению русла на протоки. В каждом из протокой1 в стрежневой зоне также может образоваться осерёдок, вызывающий более дробное деление потока, и т. д. С течением времени осерёдок, покрываясь растительностью, наращивается за счет аккумуляции наносов полых вод и постепенно становится островом. Остров перемещается вниз по реке за счет размыва его верхней по течению части — приверха и наращивания нижней — ухвостья. В местах интенсивной аккумуляции верховья островов могут перемещаться против течения реки. Такой регрессивный рост островов происходит за счет причленения к их приверхам осередков, спускающихся с вышележащего участка реки.
Достарыңызбен бөлісу: |