Обзор математических моделей для описания фазовых превращений в сталях



Pdf көрінісі
бет17/18
Дата25.01.2022
өлшемі0.49 Mb.
#454791
1   ...   10   11   12   13   14   15   16   17   18
obzor фазовые переходы в сталях

Eu-

rop. J. Mechanics A/Solids, 2007, vol. 26, pp.611-625. 

12. Barbe F., Quey R. A numerical modelling of 3D polycrystal-to-

polycrystal diffusive phase transformations involving crystal plasticity. 

Int. 

J. Plasticity, 2011, vol. 27, pp. 823-840. 

13. Berveiller M., Zaoui A. An extension of the self-consistent scheme 

to plastically-flowing polycrystals. 

J. Mech. Phys. Solids, 1979, vol. 26, 

pp. 325-344. 

14. Cahn J.W., Hilliard J.E. Free energy of a non-uniform systems. I. 

Interfacial free energy. 



J. Chem. Phys, 1958, vol. 28, pp. 258-266. 

15. Chen L.-Q., Khachaturyan A. Computer simulation of structural 

transformations during precipitation of an ordered intermetallic phase. 

Acta 

Mater, 1991, vol. 39, pp. 2533-2551. 

16. Cherkaoui M., Berveiller M., Sabar H. Micromechanical modeling 

of martensitic transformation induced plasticity (trip) in austenitic single 

crystals. 



Int. J. Plasticity, 1998, vol. 14, no.7, pp. 597-626. 

17. Fischlschweiger M., Cailletaud G., Antretter T.A mean-field 

model for transformation induced plasticity including backstress effects for 

non-proportional loadings. 



Int. J. Plasticity, 2012, vol. 37, p. 53-71. 


Обзор математических моделей для описания фазовых превращений в сталях 

 

 

189 



18. Fleck N.A., Hutchinson J.W. A reformulation of strain gradient 

plasticity. 



J. Mech. PhysSolids, 2001, vol. 49, pp. 2245-2271. 

19. Hsu T.Y. Additivity Hypothesis and Effects of Stress on Phase 

Transformations in Steel. 

Current Opinion in Solid State & Materials Sci-

ence, 2005, vol. 9, pp. 256-268. 

20. Hüßler I. Mathematische Untersuchungen eines gekoppelten Sys-

tems von ODE und PDE zur Modellierung von Phasenumwandlungen im 

Stahl, Diplomarbeit im Studiengang Technomathematik, 



Universität Bre-

men, 2007, 100 p. 

21. Inoue T., Wang, Z.G. Coupling between stresses, temperature and 

metallic structural during processes involving phase transformation. 

Mater. 

Sci. Technol., 1985, vol. 1, pp. 845-850. 

22. Iwamoto T. Multiscale computational simulation of deformation 

behavior of TRIP steel with growth of martensitic particles in unit cell by 

asymptotic homogenization method. 



Int. J. Plasticity, 2004, vol. 20, p. 841-

869. 


23. Koistinen D.P., Marburger R.E. A general equation prescribing the 

extent of the austenite-martensite transformation in pure ironcarbon alloys 

and plain carbon steels. 

Acta Metallurgica, 1959, vol. 7, pp. 59-60. 

24. Kroner E. Zur plastischen verformung des vielkristalls. 



Acta Met-

all, 1961, vol. 9, pp. 155-161. 

25. Kouznetsova V.G., Geers M.G.D. A multi-scale model of marten-

sitic transformation plasticity. 

Mechanics of Materials, 2008, vol. 40, 

pp. 641-657. 

26. Lee M.-G., Kim S.-J., Han H.N. Crystal plasticity finite element 

modeling of mechanically induced martensitic transformation (MIMT) in 

metastable austenite. 

Int. J. Plasticity, 2010, vol. 26, pp. 688-710. 

27. Logé R.E., Chastel Y.B. Coupling the thermal and mechanical 

fields to metallurgical evolutions within a finite element description of 

a forming  process. 



Comput. Methods Appl. Mech. Engrg.,  2006, vol.195, 

pp. 6843-6857. 

28. Loginova I., Amberg G., Agren J. Phase-field simulations of non-

isothermaly binary alloy solidification. 



Acta. Materialia, 2001, vol. 49, 

pp. 573-581. 

29. Mahnken R., Schneidt A., Antretter T. Macro modelling and ho-

mogenization for transformation induced plasticity of a low-alloy steel. 



Int. 

J. Plasticity, 2009, vol. 25, pp. 183-204. 


И.Л. Исупова, П.В. Трусов 

 

 

190 



30. Mazzoni-Leduc L., Pardoen T., Massart T.J. Strain gradient plas-

ticity analysis of transformation induced plasticity in multiphase steels. 



Int. 

J. Solids and Structures, 2008, vol. 45, pp. 5397-5418. 

31. Olson G.B., Cohen M. Kinetics of strain-induced martensitic nu-

cleation. 

Metallurgical Transactions A, 1975, vol. 6A, pp. 791-795. 

32. Petit-Grostabussiat S., Taleb L., Jullien J.-F. Experimental results 

on classical plasticity of steels subjected to structural transformations. 

Int. J. 

Plasticity, 2004, vol. 20, pp. 1371-1386. 

33. Shi J., Turteltaub S., Van der Giessen E. Analysis of grain size ef-

fects on transformation-induced plasticity based on a discrete dislocation-

transformation model. 



J. Mech. PhysSolids, 2010, vol. 58, pp. 1863-1878. 

34. Steinbach I., Apel M. Multi-phase field model for solid state trans-

formation with elastic strain. 

Physica D, 2006, vol. 217, pp. 153-160. 

35. Tjahjanto D.D., Turteltaub S., Suiker A.S.J. Crystallographically 

based model for transformation-induced plasticity in multiphase carbon 

steels. 


Continuum Mech. Thermodyn, 2008, 

vol. 


19, pр. 399-422. 

36. Turteltaub S., Suiker A.S.J. A multiscale thermomechanical model 

for cubic to tetragonal martensitic phase transformations. 

Int. J. Solids and 

Structures, 2005, doi:10.1016/j.ijsolstr.2005.06.065. 

37. Varma M. R., Sasikumar R., Pillai S. G. K. Cellular automaton 

simulation of microstructure evolution during austenite decomposition un-

der continuous cooling conditions. 



Bull. Mater. Sci., 2001, vol. 24, no. 3, 

pp. 305-312. 

38. Wang Y., Chen L.-Q., Khachaturyan A.G. Kinetics of strain-

induced morphological transformation in cubic alloys with a miscibility gap. 



Acta Metall. Mater., 1993, vol. 41, no. 1, pp. 279-296. 

39. Yamanaka A., Takaki T., Tomita Y. Elastoplastic phase-field 

simulation of martensitic transformation with plastic deformation in poly-

crystal. 



Int. J. Mech. Sci., 2010, vol. 52, pp. 245-250. 



Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   18




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет