Eu-
rop. J. Mechanics A/Solids, 2007, vol. 26, pp.611-625.
12. Barbe F., Quey R. A numerical modelling of 3D polycrystal-to-
polycrystal diffusive phase transformations involving crystal plasticity.
Int.
J. Plasticity, 2011, vol. 27, pp. 823-840.
13. Berveiller M., Zaoui A. An extension of the self-consistent scheme
to plastically-flowing polycrystals.
J. Mech. Phys. Solids, 1979, vol. 26,
pp. 325-344.
14. Cahn J.W., Hilliard J.E. Free energy of a non-uniform systems. I.
Interfacial free energy.
J. Chem. Phys, 1958, vol. 28, pp. 258-266.
15. Chen L.-Q., Khachaturyan A. Computer simulation of structural
transformations during precipitation of an ordered intermetallic phase.
Acta
Mater, 1991, vol. 39, pp. 2533-2551.
16. Cherkaoui M., Berveiller M., Sabar H. Micromechanical modeling
of martensitic transformation induced plasticity (trip) in austenitic single
crystals.
Int. J. Plasticity, 1998, vol. 14, no.7, pp. 597-626.
17. Fischlschweiger M., Cailletaud G., Antretter T.A mean-field
model for transformation induced plasticity including backstress effects for
non-proportional loadings.
Int. J. Plasticity, 2012, vol. 37, p. 53-71.
Обзор математических моделей для описания фазовых превращений в сталях
189
18. Fleck N.A., Hutchinson J.W. A reformulation of strain gradient
plasticity.
J. Mech. Phys. Solids, 2001, vol. 49, pp. 2245-2271.
19. Hsu T.Y. Additivity Hypothesis and Effects of Stress on Phase
Transformations in Steel.
Current Opinion in Solid State & Materials Sci-
ence, 2005, vol. 9, pp. 256-268.
20. Hüßler I. Mathematische Untersuchungen eines gekoppelten Sys-
tems von ODE und PDE zur Modellierung von Phasenumwandlungen im
Stahl, Diplomarbeit im Studiengang Technomathematik,
Universität Bre-
men, 2007, 100 p.
21. Inoue T., Wang, Z.G. Coupling between stresses, temperature and
metallic structural during processes involving phase transformation.
Mater.
Sci. Technol., 1985, vol. 1, pp. 845-850.
22. Iwamoto T. Multiscale computational simulation of deformation
behavior of TRIP steel with growth of martensitic particles in unit cell by
asymptotic homogenization method.
Int. J. Plasticity, 2004, vol. 20, p. 841-
869.
23. Koistinen D.P., Marburger R.E. A general equation prescribing the
extent of the austenite-martensite transformation in pure ironcarbon alloys
and plain carbon steels.
Acta Metallurgica, 1959, vol. 7, pp. 59-60.
24. Kroner E. Zur plastischen verformung des vielkristalls.
Acta Met-
all, 1961, vol. 9, pp. 155-161.
25. Kouznetsova V.G., Geers M.G.D. A multi-scale model of marten-
sitic transformation plasticity.
Mechanics of Materials, 2008, vol. 40,
pp. 641-657.
26. Lee M.-G., Kim S.-J., Han H.N. Crystal plasticity finite element
modeling of mechanically induced martensitic transformation (MIMT) in
metastable austenite.
Int. J. Plasticity, 2010, vol. 26, pp. 688-710.
27. Logé R.E., Chastel Y.B. Coupling the thermal and mechanical
fields to metallurgical evolutions within a finite element description of
a forming process.
Comput. Methods Appl. Mech. Engrg., 2006, vol.195,
pp. 6843-6857.
28. Loginova I., Amberg G., Agren J. Phase-field simulations of non-
isothermaly binary alloy solidification.
Acta. Materialia, 2001, vol. 49,
pp. 573-581.
29. Mahnken R., Schneidt A., Antretter T. Macro modelling and ho-
mogenization for transformation induced plasticity of a low-alloy steel.
Int.
J. Plasticity, 2009, vol. 25, pp. 183-204.
И.Л. Исупова, П.В. Трусов
190
30. Mazzoni-Leduc L., Pardoen T., Massart T.J. Strain gradient plas-
ticity analysis of transformation induced plasticity in multiphase steels.
Int.
J. Solids and Structures, 2008, vol. 45, pp. 5397-5418.
31. Olson G.B., Cohen M. Kinetics of strain-induced martensitic nu-
cleation.
Metallurgical Transactions A, 1975, vol. 6A, pp. 791-795.
32. Petit-Grostabussiat S., Taleb L., Jullien J.-F. Experimental results
on classical plasticity of steels subjected to structural transformations.
Int. J.
Plasticity, 2004, vol. 20, pp. 1371-1386.
33. Shi J., Turteltaub S., Van der Giessen E. Analysis of grain size ef-
fects on transformation-induced plasticity based on a discrete dislocation-
transformation model.
J. Mech. Phys. Solids, 2010, vol. 58, pp. 1863-1878.
34. Steinbach I., Apel M. Multi-phase field model for solid state trans-
formation with elastic strain.
Physica D, 2006, vol. 217, pp. 153-160.
35. Tjahjanto D.D., Turteltaub S., Suiker A.S.J. Crystallographically
based model for transformation-induced plasticity in multiphase carbon
steels.
Continuum Mech. Thermodyn, 2008,
vol.
19, pр. 399-422.
36. Turteltaub S., Suiker A.S.J. A multiscale thermomechanical model
for cubic to tetragonal martensitic phase transformations.
Int. J. Solids and
Structures, 2005, doi:10.1016/j.ijsolstr.2005.06.065.
37. Varma M. R., Sasikumar R., Pillai S. G. K. Cellular automaton
simulation of microstructure evolution during austenite decomposition un-
der continuous cooling conditions.
Bull. Mater. Sci., 2001, vol. 24, no. 3,
pp. 305-312.
38. Wang Y., Chen L.-Q., Khachaturyan A.G. Kinetics of strain-
induced morphological transformation in cubic alloys with a miscibility gap.
Acta Metall. Mater., 1993, vol. 41, no. 1, pp. 279-296.
39. Yamanaka A., Takaki T., Tomita Y. Elastoplastic phase-field
simulation of martensitic transformation with plastic deformation in poly-
crystal.
Int. J. Mech. Sci., 2010, vol. 52, pp. 245-250.
Достарыңызбен бөлісу: |