П родольная статическая устойчивость по скорости. Под этой характеристикой понимается стремление самолета сохранять и восстанавливать скорость исходного режима полета при постоянной перегрузке. Из определения следует, что в данном виде устойчивости рассматриваются продольные моменты, стремящиеся восстановить заданный режим полета, когда изменение скорости полета и угла атаки связаны между собой так, что перегрузка nу= Y/G постоянна.
Постоянство перегрузки при изменении скорости возможно при изменении угла атаки самолета. Точнее, при увеличении скорости полета угол атаки самолета должен уменьшаться, а при уменьшении скорости—увеличиваться. При таком характере движения самолета продольная устойчивость по скорости совпадает с продольной устойчивостью по перегрузке.
Для обеспечения продольной устойчивости по скорости, как и для обеспечения продольной устойчивости по перегрузке, необходимо, чтобы степень продольной устойчивости была отрицательной mzCу = mz/Су = (хт - хF) т. е. центр масс самолета должен находиться впереди его фокуса.
Для подтверждения этого вывода рассмотрим проявление продольной устойчивости по скорости при постоянной перегрузке на таком примере.
Допустим, что в горизонтальном полете (nу= Y/G= 1) скорость самолета увеличилась на V, а угол атаки уменьшился на . Напомним, что прирост подъемной силы, вызванный уменьшением угла атаки на постоянной скорости, отрицателен и приложен в фокусе самолета (Y<0). Прирост подъемной силы, вызванный увеличением скорости при постоянном угле атаки, положителен и приложен в центре давления самолета (YV>0). Дополнительно условимся, что центр давления самолета совпадает с его центром масс (рис. 62). Следует также учесть, что |Y| =|YV|, так как nу=1, а значит Y=G.
Как видно из рисунка, момент прироста подъемной силы относительно центра масс самолета равен нулю. Прирост подъемной силы Y относительно центра масс создает кабрирующий момент, стремящийся увеличить угол атаки до заданного и восстановить режим полета по скорости и , т.е. при <0 возникает Mz(Y)>0 и mz>0. Следовательно, mz=mz/<0; mzCу =mz/Су = (хт - хF)<0 , что соответствует вышеуказанному условию продольной устойчивости по перегрузке и скорости.
Действие кабрирующего момента Mz(Y)>0, стремящегося увеличить угол атаки и уменьшить скорость до заданной, дополняется неравенством силы лобового сопротивления самолета и тяги силовой установки. Суть этого заключается в следующем. При увеличении скорости в первом режиме горизонтального полета (см. рис. 15) сила лобового сопротивления увеличивается, так как К=Су/Сх уменьшается (Х=Рг.п=G/К). Тяга силовой установки на заданном режиме работы двигателей уменьшается (см. рис. 15 и 12). Следовательно, сила лобового сопротивления (Х+Х) становится больше тяги силовой установки Р—Р и самолет уменьшает скорость полета. По мере уменьшения скорости до заданной сила лобового сопротивления уменьшается, а тяга при постоянном положении РУД увеличивается. Когда самолет уменьшит скорость до заданной, то Рг.п=Х, YV=0, угол атаки увеличится до заданного, Y и его момент Mz(Y) станет равным нулю.
Действие кабрирующего момента Mz(Y)>0 пилот ощущает на штурвале в виде давящих усилий при увеличении скорости в первом режиме горизонтального полета. В этом случае при постоянной высоте скорость полета увеличивается в результате увеличения тяги, а подъемная сила сохраняется равной полетному весу самолета, так как положительный прирост подъемной силы вследствие увеличения скорости YV>0 уравновешивается отрицательным приростом подъемной силы, вызванным уменьшением угла атаки самолета (Y<0). Этот случай полета показан на балансировочных графиках (см. рис. 59), которые выражают зависимость угла отклонения руля высоты в и продольных усилий Рв на штурвале от V, и числа М.
Из этого примера можно сделать следующий вывод. Если самолет устойчив по скорости, то для увеличения ее пилот должен преодолеть «сопротивление» самолета увеличению скорости (проявление устойчивости по скорости), т. е. для увеличения скорости на V>0 и балансировки самолета на новой скорости V+V необходимо приложить к штурвалу дополнительные давящие усилия для отклонения руля высоты вниз (в>0).
Следовательно, если самолет устойчив по скорости, имеет место неравенство в/V>0, причем для изменения скорости полета при большей устойчивости по скорости отклонение руля высоты и величины усилий на штурвале будут также большими.
Самолет Ил-76Т обладает достаточно хорошей продольной устойчивостью по скорости до числа М=0,77. Начиная с М==0,8 потребные отклонения руля высоты и продольные усилия на штурвале по скорости полета незначительно уменьшаются.
Д емпфирующие моменты. Устойчивость самолета и характер его возмущенного движения в значительной степени зависят от величины демпфирующих моментов, которые возникают в процессе вращения самолета вокруг центра масс. В обеспечении продольной устойчивости и управляемости важное значение имеют продольные демпфирующие моменты, которые возникают при вращении самолета вокруг оси OZ. Суммарный демпфирующий момент создается горизонтальным оперением, фюзеляжем и крылом (наибольший—горизонтальным оперением).
Рассмотрим процесс возникновения продольных демпфирующих моментов на примере работы горизонтального оперения (рис. 63). Допустим, что в установившемся горизонтальном полете появилось вращение самолета в сторону кабрирования с угловой скоростью z. Вследствие этого горизонтальное оперение приобретает вращательную скорость, вектор которой направлен вниз и равен Uz = z xго (хго - расстояние от центра масс самолета до центра давления горизонтального оперения). Вектор вращательной скорости Uz , суммируясь с вектором истинной скорости вызывает положительный прирост угла атаки z >0 и подъемной силы Yz >0. Эта сила направлена вверх и на плече хго создает демпфирующий пикирующий момент Yzxго, препятствующий кабрированию самолета. Из определения следует, что при большей угловой скорость прирост подъемной силы и ее демпфирующего момента будет большим. Величина демпфирующего момента также зависит от величины плеча хго. При отсутствии углового вращения самолета демпфирующие силы и их моменты равны нулю.
Аналогично можно объяснить и возникновение демпфирующих моментов крыла и фюзеляжа, только величина их при той же угловой скорости значительно меньше.
При полете на высоте с той же приборной скоростью, что и у земли величина, истинной скорости больше, прирост угла атаки и подъемной силы при той же угловой скорости меньше, в связи с чем будут меньшими и демпфирующие моменты.
Следовательно, динамическая устойчивость самолета на высоте меньше, чем у земли.
Направление демпфирующих сил Yz го ; Yz ф ; Yz кр и их моментов Mzz при кабрировании (увеличении ) показаны на рис. 63.
Как видно из рисунка, демпфирующие моменты направлены в сторону, противоположную вращению самолета, а это значит, что они препятствуют его вращению вокруг оси OZ. Так как нарушенное продольное равновесие самолет обычно восстанавливает, совершая колебания вокруг оси OZ, то демпфирующие моменты, направленные в противоположную сторону вращения, содействуют затуханию этих колебаний, т. е. динамическая устойчивость самолета улучшается.
Для уяснения значения демпфирующих и восстанавливающих моментов, а также для большего понимания устойчивости, рассмотрим несколько упрощенно продольное возмущенное движение устойчивого самолета.
Д опустим, что в полете под действием внешних сил (восходящего потока) самолет начал кабрировать. В процессе кабрирования угол атаки самолета увеличивается, а скорость сравнительно медленно уменьшается.
Если самолет статически устойчив по перегрузке и скорости (рис. 64), то при всяком увеличении угла атаки на >0 он создает восстанавливающий пикирующий момент Mz(Yс)<0, так как возникает положительный прирост подъемной силы Yс>0, который приложен в фокусе самолета. Наряду с этим самолет, приобретая угловую скорость вращения z в сторону увеличения угла атаки, создаст демпфирующий момент Mzz< 0 вследствие вращательного движения горизонтального оперения, крыла и фюзеляжа. Этот момент также направлен в сторону, противоположную вращению самолета.
Под действием восстанавливающего и демпфирующего моментов самолет в процессе увеличения угла атаки постепенно уменьшает угловую скорость вращения z. В определенный момент вращение самолета прекращается, угловая скорость z и демпфирующий момент Mzz, становится равным нулю, а восстанавливающий пикирующий момент достигает максимального значения. С этого положения самолет под действием восстанавливающего (пикирующего) момента Mz = Yc(xm – xF) начинает уменьшать угол атаки. При этим падает подъемная сила и растет скорость полета.
Восстанавливающий момент самолета уменьшается и на заданном угле атаки становится равным нулю. Кроме того, в процессе уменьшения угла атаки к заданному самолет приобретает угловую скорость вращения z и создает демпфирующий момент. Этот момент направлен в сторону, противоположную вращению.
Вследствие наличия демпфирующего момента и уменьшения восстанавливающего момента самолет по мере возврата к задан ному углу атаки уменьшает угловую скорость вращения z. Если к моменту возвращения самолета на заданный угол атаки скорость полета и угловая скорость станут равными нулю, то демпфирующий момент тоже станет равным нулю. Самолет зафиксирует заданные углы атаки и скорость полета. Обычно самолет возвращается к заданному продольному равновесию, совершая затухающие колебания, которые называют короткопериодическими.
9.4. Продольная управляемость
П родольная управляемость—это способность самолета измерять угол атаки при отклонении руля высоты (рис. 65).
При отклонении руля высоты (РВ) изменяется величина подъёмной силы и момент от горизонтального оперения, под действием которого самолет изменяет угол атаки. Процесс изменения угла атаки при заданном положении руля высоты происходит до тех пор, пока момент крыла не уравновесится моментом горизонтального оперения.
При отклонении руля высоты на устойчивом самолете угол атаки, изменившись на определенную величину, зафиксируется благодаря продольной устойчивости. У неустойчивого самолета угол атаки изменяется до тех пор, пока пилот противоположным отклонением руля высоты не уравновесит продольные моменты. Из этого вытекает, что нормальную продольную управляемость можно получить только на устойчивом самолете.
Для уяснения работы и особенностей продольного управления самолетом, рассмотрим систему управления рулем высоты, изображенную на рис. 66. Руль высоты состоит из двух отдельных секций, имеющих триммер-флетнер с электромеханизмом управления. Каждая секция РВ с помощью жестких проводок, проложенных по левому и правому борту фюзеляжа, подсоединена соответственно к левому и правому штурвалу управления 1 - 1 рулем высоты. В левой ветви проводки включены параллельно две автономные рулевые машины (АРМ), а в правой—одна АРМ 4. Системы управления правой и левой половиной руля высоты при нормальной работе соединены между собой тремя механизмами расцепления 3. В этом случае система управления РВ является спаренной и отклонения обеих половин РВ может осуществляться как левым, так и правым пилотом.
Наличие трех механизмов расцепления, включенных на различных участках системы, позволяет в случае необходимости (отказ агрегатов системы, повреждение одной из ветвей проводки управления) рассоединить проводки управления левой и правой секций руля высоты. Управление в этом случае осуществляется только одной секцией руля высоты одним пилотом от соответствующего штурвала и перестановкой стабилизатора.
При нормально работающей системе управления секции руля высоты отклоняются автономными рулевыми машинами (АРМ).
Каждая АРМ представляет собой бустерный автономный следящий гидропривод, работающий по необратимой схеме. Для создания давления рабочей жидкости каждая АРМ имеет электроприводную насосную станцию, прикрепленную к своему гидробаку. Управляющий золотник вместе с силовым цилиндром и системой рычагов образует бустерную часть АРМ. Бустер вместе с насосной станцией и гидробаком образует единый блок АРМ.
Управляющий золотник бустера каждой АРМ при ручном управлении воспринимает продольное движение штурвалов пилотов, а при автоматическом—рулевой машины САУ 5, включенной (по одной) в каждую ветвь проводки управления РВ.
При перемещении управляющего золотника давление жидкости от насосной станции АРМ поступает в силовой цилиндр гидропривода, перемещает его поршень со штоком. Это движение через проводку передается на отклонение руля высоты и перемещение системы обратной связи, обеспечивающей перекрытие каналов циркуляции жидкости в гидроприводе. Благодаря этому каждому положению штурвала управления или рулевой машины САУ соответствует определенное положение руля высоты. Бустер АРМ работает по необратимой схеме и нагрузка на штурвалах от аэродинамических шарнирных моментов секций РВ отсутствует. Для имитации этой нагрузки в каждую ветвь проводки включено по одному пружинному загрузочному устройству 2. Нагрузка на штурвалах в этом случае снимается механизмами триммерного эффекта МЭТ, включенными в загрузочное устройство. Следует иметь в виду, что при продольной балансировке самолета стабилизатором нагрузка на штурвалах незначительная, так как РВ отклоняется до 2° и механизмы триммерного эффекта практически не используются. В системе предусмотрена дополнительная корректировка усилий на штурвале в зависимости от скоростного напора системой автоматического регулирования усилий (АРУ).
Система позволяет осуществлять безбустерное управление рулем высоты в случае полного отказа бустерной системы, причем при отсутствии давления в трех бустерах загрузочные устройства автоматически выключаются, так как нагрузка на штурвалах в этом случае создается шарнирными моментами секций руля высоты. Усилия на штурвалах в этом случае снимаются триммер-флетнерами.
Для характеристики продольной управляемости и устойчивости по скорости пользуются балансировочными графиками. Балансировочные графики, выражающие зависимость угла отклонения руля высоты в и потребных усилий на штурвале Рв от индикаторной скорости полета V, и числа М, т. е.
в=f(Vi); Pв=f(Vi); в=f(M); Pв=f(M) при ст=0
были рассмотрены в разд. 9.3 (см. рис. 59). В этом разделе было отмечено, что продольная балансировка самолета может быть обеспечена отклонением только руля высоты при установке стабилизатора под определенным углом ст или перестановкой стабилизатора и отклонением руля высоты на угол до ±2, при этом остается запас угла отклонения руля высоты не менее 13° вниз и не менее 19° вверх.
Обычно при нормально работающей системе управления продольная балансировка самолета во всех режимах полета обеспечивается перестановкой стабилизатора, а необходимый маневр по перегрузке—отклонением руля высоты.
Наклон графиков в и Рв=f(Vi), а также в и Pв=f(М) — нормальный, что свидетельствует о достаточной устойчивости самолета по скорости.
Система продольной устойчивости и управляемости транспортного самолета должна соответствовать следующим основным требованиям НГЛС-2:
1) максимальные усилия на штурвальной колонке Рв тах при пилотировании самолета в соответствии с РЛЭ должны быть по абсолютной величине не более 35 кгс, при этом величина сил трения в системе не более 4 кгс.
2) расход потребных отклонений колонки штурвала хв для создания единицы перегрузки nу=1 (градиент отклонения штурвальной колонки по перегрузке) должен быть не менее 50 мм и прямым (на себя), т. е.
3) расход потребных усилий на колонке штурвала Рв для создания единицы перегрузки nу=1 (градиент продольных усилий на штурвальной колонке по перегрузке) должен быть по абсолютной величине не менее 10 кгс и прямым, т. е.:
4) усилия на штурвальной колонке, потребные для вывода самолета на максимальную эксплуатационную перегрузку nуэmах и для вывода на предельно допустимый угол атаки доп (Судоп) при балансировке триммером в крейсерском режиме должны быть прямыми и по абсолютной величине не менее 25—30 кгс.
Н а рис. 67 изображены графики зависимости градиента отклонения штурвальной колонки по перегрузке xвnу=хв/nу, градиента отклонения руля высоты по перегрузке вnу=в/nу и градиента продольных усилий на штурвальной колонке по перегрузке Рвnу= Рв/nу от числа М при полетной конфигурации (механизации крыла и шасси убраны) самолета Ил-76Т на высоте 10000 м, с полетным весом 130 т, при центровках 22% ba и 40% ba.
На рис. 68 изображены графики зависимости градиентов xвnу , вnу , Рвnу от индикаторной скорости Vi при выпущенных закрылках на 30° и предкрылках на 14°, а также при з=43 и пр=25°, при центровках 22% ba и 40% ba на высоте Hмса=0, c полетным весом самолета 130 т.
Из графиков рис. 67 можно сделать вывод, что для создания единичной перегрузки (nу=1) при числе М=0,7 и центровке 40% ba потребный ход штурвальной колонки хв «на. себя» составляет около 55 мм (хв=-55 мм), угол отклонения руля высоты вверх около 4° (в=-4°), а потребное усилие на штурвале не менее 20 кг (Рв=-20 кг).
Такие величины хв= xвnу=1 , в=вnу=1 , Рв= Рвnу=1 при предельно задней центровке 40% ba свидетельствуют о хорошей продольной устойчивости самолета по перегрузке и нормальной продольной управляемости.
При центровке 22% ba на числе М=0,7: xвnу =-120 мм, вnу =-9,5°, а Рвnу =-35 кг. Значительное увеличение по абсолютной величине всех градиентов при этой центровке (близкой к минимальной 20% ba) свидетельствует о значительно лучшей продольной устойчивости самолета чем при xт=40% ba, но вполне достаточной управляемости, так как при нормальном управлении самолетом потребный nу не превышает величины ±0,3. При таком изменении перегрузки градиенты xвnу , вnу и Рвnу будут уменьшены более чем в 3 раза.
Из графиков рис. 68 можно аналогично определить величину градиентов xвnу , вnу и Рвnу при выпущенной механизации крыла во взлетное положение (з=30, пр=14°) и взлетно-посадочное (з=43°, пр=25°) на различных индикаторных скоростях (ViVпр), соответствующих этапам взлета и захода на посадку.
Из графиков (см. рис. 68) видно, что при взлетно-посадочном положении механизации крыла, абсолютная величина, всех градиентов больше, чем при убранной механизации (см. рис. 67), особенно при передней центровке самолета—22% ba. Это объясняется прежде всего уменьшением эффективности руля высоты вследствие небольших скоростей полета Vi.
Учитывая, что для удержания самолета на траекторий взлета, и захода на посадку, включая и снижение по глиссаде, потребное изменение перегрузки nу составляет величину не более ±0,3, то расход руля высоты, хода штурвальной колонки и продольных усилий будет значительно меньшим (уменьшится более чем в 3 раза).
Для характеристики продольной динамической устойчивости и управляемости самолета в процессе лабораторных и летных испытаний определяется время срабатывания (выхода) tв и относительный заброс нормальной (вертикальной) перегрузки .
Время срабатывания tв—это время, в течение которого при ступенчатом (резком) отклонении руля высоты в первый раз достигается значение установившегося прироста нормальной перегрузки (nу уст).
Относительный заброс нормальной (вертикальной) перегрузки выражается отношением заброса нормальной перегрузки после резкой дачи (отклонения) руля высоты (nу заб) к установившемуся приращению нормальной перегрузки после дачи руля высоты (nу уст), т. е.
= nу заб / nу уст
При нормальной динамической устойчивости и управляемости время срабатывания tв должно быть небольшим (1 ...4 с), а относительный запрос перегрузки не более 0,3 ...0,35 в крейсерском полете и (0,1 ... 0,15) при в злете и посадке.
На рис. 69, а схематично показан переходный процесс изменения нормальной перегрузки nу по времени на величину nу уст (кривая 1) при ступенчатом отклонении руля высоты (кривая 2) на устойчивом самолете, где Т—период колебания самолета в переходном процессе, At—амплитуда колебаний самолета в момент времени t, Аt+T — амплитуда колебаний в момент времени t+Т.
Н а рис. 69, б изображены графики, выражающие зависимость времени срабатывания tв от индикаторной скорости Vi, самолета Ил-76Т при различной центровке и высоте крейсерского полета, а также при взлетном и посадочном положении механизации крыла и центровке хт=22% ba и 40% ba.
На рис. 70 представлены графики, выражающие зависимость относительного заброса нормальной перегрузки от индикаторной скорости самолета Ил-76Т при различной центровке и высоте крейсерского полета, а при взлетном и посадочном положениях механизации крыла при центровке 22% ba и 40% ba.
Как видно из графиков (см. рис. 70) относительный заброс нормальных перегрузок не превышает 0,3 в крейсерском полете, а при посадке и взлете—0,12. Время срабатывания tв (см. рис. 69,б) в режиме захода на посадку при средних центровках не превышает 3,5 с, а в крейсерском полете и при взлете от 1 до 3 с.
Из анализа балансировочных графиков по скорости и по перегрузке (см. рис. 59, 67 и 68) можно сделать вывод, что самолет Ил-76Т обладает хороший управляемостью на малых индикаторных скоростях полета при выпущенной механизации крыла и в эксплуатационном диапазоне чисел М при убранной механизации. Градиенты отклонения штурвальной колонки xвnу, отклонения руля высоты вnу и усилий на штурвальной колонке Рвnу на единицу перегрузки (см. рис. 67 и 68) подобраны так, чтобы:
при больших скоростях полета самолет не был излишне чувствителен (не требовал для изменения перегрузки малых перемещении штурвальной колонки и небольших усилий на ней);
при малых скоростях полета самолет не был тяжелым в управлении не требовал от пилота больших усилий для выполнения маневра.
Самолет обладает продольной динамической устойчивостью и управляемостью в диапазоне эксплуатационных режимов полета и центровок. Коротко-периодические продольные колебания самолета затухают без вмешательства пилота. Характеристики динамической управляемости обеспечивают выполнение маневров на самолете при небольших относительных забросах перегрузок (см. рис. 70) и умеренном времени срабатывания tв (см. рис. 69).
В заключение рассмотрим особенности продольной устойчивости и, управляемости при полностью выпущенной механизации крыла (з=43° пр=25°). На рис. 71 изображены графики зависимости коэффициента Су от угла (кривая 1), скоса потока в области горизонтального оперения от угла (кривая 2); угла атаки горизонтального оперения го от угла атаки крыла при различных углах установки стабилизатора (кривая 3) и Суго=f() (кривая 4).
Из графиков видно, что при снижении по глиссаде на расчетной скорости равной 1,3 Vс Су крыла равен 1,7... 1,8 при ==3. ..4, угол атаки горизонтального оперения с учетом скоса потока =-7,5° при ст=- 7° равен минус 13 а Суго при в=0 равен минус 1. Для удержания самолета на глиссаде потребный диапазон изменения перегрузки от единичной составляет ± 0,25.
В случае увеличения перегрузки на 0,25 угол атаки самолета увеличивается до 9°, скос потока в области горизонтального оперения—до минус 9°, угол атаки горизонтального оперения при ст=-7° уменьшается по абсолютной величине до минус 10,5°, а Суго=-0,8. Крыло и горизонтальное оперение обтекаются нормально, продольная устойчивость и управляемость остаются нормальными.
При уменьшении перегрузки на 0,25: крыла=0,8. ..1,0°, =-6°; го=-10° при ст=-7, Суго=-1,15. В этом случае на нижней поверхности профиля крыла начинается срыв потока, сопровождающийся слабой тряской, которая усиливается при дальнейшем уменьшении угла атаки крыла до нуля и меньше [см. рис. 71 заштрихованную зону на кривых Суго=()]. Появление срыва потока на 0° и усиление тряски создает опасную ситуацию, не гарантирующую нормальную продольную устойчивость и управляемость. Поэтому при выполнения предпосадочного маневра, обеспечивающего удержание самолета на глиссаде, вывод крыла на отрицательные углы атаки ( крыла <0) НЕ ДОПУСКАЕТСЯ.
В случае появления тряски самолета вследствие срыва потока с нижней поверхности профиля крыла при < 0° следует угол атаки самолета несколько увеличить, уменьшить скорость снижения до расчетной, равной 1,3 Vс.
Расчетными условиями для определения потребной эффективности продольного управления являются условия балансировки самолета, при заходе на посадку и при выполнении посадки. Исходя из этого максимальный угол отклонения стабилизатора на кабрирование установлен минус 7°, при котором в процессе снижения и посадки самолета с предельно передней центровкой остается необходимый запас руля высоты на кабрирование. Отклонение гасителей подъемной силы в тормозном режиме вызывает кабрирование самолета, которое легко устраняется отклонением штурвала от себя.
9.5. Боковое равновесие, устойчивость и управляемость
Боковое равновесие—такое состояние самолета, при котором сумма сил, действующих на самолет, и сумма их моментов относительно продольной и нормальной осей равны нулю.
Рассмотрим условия, обеспечивающие боковое равновесие. Пусть самолет совершает равномерный прямолинейный горизонтальный полет на определенном угле атаки и скорости. Силы, действующие на самолет в этом случае, показаны на рис. 72.
Для обеспечения поперечного равновесия необходимо, чтобы сумма проекций сил на ось ОУ и сумма, их моментов относительно оси ОХ равнялась нулю (см. рис. 72,б):
Y=Yл + Yп – G = 0; Mx =Yлzл - Yпzп
Для обеспечения путевого равновесия необходимо, чтобы сумма проекций сил на ось ОХ и сумма их моментов относительно ОУ равнялась нулю (см. рис. 72,а) :
Х = P1 + P2 + P3 + P4 – X = 0
My = P4z4 + P3z3 – P2z2 – P1z1 = 0
Если обеспечены условия поперечного и путевого равновесия, то самолет находится в состоянии бокового равновесия.
Боковая устойчивость—это способность самолета сохранять и восстанавливать заданное боковое равновесие в полете.
Для обеспечения боковой устойчивости необходимо обеспечить поперечную и путевую устойчивость и достигнуть определенного соотношения между ними. Поперечную и путевую статическую устойчивость определяют соответственно моменты крена Мх и моменты рыскания Му, возникающие при наличии угла крена или угла скольжения . Если при появлении угла крена и скольжения возникают моменты Мх и Му, которые стремятся восстановить заданное боковое (поперечное и путевое) равновесие, то самолет будет статически устойчивым в боковом отношении.
Рассмотрим возникновение восстанавливающих моментов крена самолета Мх при появлении угла крена .
Допустим, что в полете появился правый крен самолета (рис. 73, б). Под действием равнодействующей Z (сумма подъемной силы Y и веса самолета G) возникает ускорение самолета в сторону опущенного крыла. Вследствие этого появляется боковая скорость Vz, которая, складываясь со скоростью полета Vx (см. рис. 73,а), вызывает скольжение самолета в сторону крена (на правое полукрыло).
Самолет Ил-76Т имеет стреловидность крыла 25 и поперечное равное —3°. При наличии стреловидного крыла, скорость набегающего потока V раскладывается, на две составляющие: V2, направленную параллельно линии фокусов крыла, и V1, направленную перпендикулярно этой линии. При появлении угла крена и скольжения, допустим, на правое полукрыло (см. рис. 73,а) его эффективная стреловидность уменьшается, а левого—увеличивается. Вследствие этого эффективная скорость потока V1 и подъемная сила правого полукрыла Y2+Y2 будет значительно больше, чем у левого Y1—Y1. Кроме того, при наличии скольжения левое полукрыло несколько затеняется фюзеляжем, а значит, его подъемная сила дополнительно уменьшается. В результате разности подъемных сил возникает большой восстанавливающий момент Мх, стремящийся вывести самолет из правого крена. Аналогичная разность подъемных сил возникает и на половинах горизонтального оперения (на рис. 73,б не показано), увеличивающая восстанавливающий момент Мх.
Таким образом, стреловидное крыло значительно увеличивает поперечную устойчивость самолета по сравнению с прямым крылом.
Для улучшения поперечной устойчивости самолетов с прямым крылом необходимо придавать крылу положительное поперечное , прямая стреловидность дает такую большую поперечную устойчивость, что для ее уменьшения приходится придавать ему отрицательное поперечное , равное минус 3°.
При наличии, отрицательного в процессе скольжения самолета углы атаки левого и правого полукрыльев различные. Так, при скольжении на правое полукрыло угол атаки левого больший. Такая разность углов атаки уменьшает разность подъемных сил левого и правого полукрыльев, а значит, уменьшает и восстанавливающий момент Мх. Это благоприятно сказывается на боковой устойчивости самолета (поперечной и путевой вместе взятых).
Для оценки поперечной статической устойчивости самолета по углу скольжения пользуются графиками, которые выражают зависимость коэффициента крена самолета mх от угла скольжения , т. е. mx=f().
Коэффициент момента крена самолета вычисляется по формуле
mx = Mx/(lSV2/2)
где Мх—момент крена самолета, который определяется опытным путем при различных углах скольжения самолета ; l—размах крыла.
Изменение коэффициента тx по углу скольжения для статически устойчивого в поперечном отношении самолета показано на рис. 74,а (кривая 1). Имея графики зависимости коэффициента mx по углу скольжения , можно дать характеристику статической устойчивости самолета.
Наклон кривой тх=f() характеризует степень поперечной статической устойчивости самолета тx, которая выражается отношением прироста коэффициента момента крена самолета mx, к приросту скольжения , т. е. mx=mх/=(тх2—тх1)(2—1) Из определения следует, что степень поперечной устойчивости тx характеризует величину изменения коэффициента момента крена mx , приходящуюся на один градус изменения угла скольжения самолета .
Если самолет статически устойчив, то степень поперечной статической устойчивости отрицательна mx<0). Действительно, при скольжении на правое полукрыло устойчивый самолет создает момент, выводящий его из крена (Мх>0). Это значит, что при 2>1, mx= (mx2— mx1) <0 и при =(2—1)>0, тогда mx =mx/=(mx2— mx1)/(2—1)<0.
Рассмотрим возникновение восстанавливающих моментов рыскания самолета Му при появлении угла скольжения на правое полукрыло.
Как было сказано, при появлении крена на правое полукрыло возникает скольжение самолета на это полукрыло (см. рис. 73,б).
При скольжении эффективная стреловидность правого полукрыла уменьшается, а составляющая скорости потока V1 и сила лобового сопротивления его увеличивается на величину X2>0. И наоборот, эффективная стреловидность левого полукрыла увеличивается, а составляющая скорости потока V1 и сила лобового сопротивления его уменьшается на X1<0.
Вследствие разности лобовых сопротивлений правого и левого полукрыльев возникает момент рыскания Му, стремящийся уменьшить угол скольжения. Кроме того, при скольжении самолета на правое полукрыло вертикальное оперение и фюзеляж создают боковую силу Z, момент которой относительно оси OY также стремится уменьшить угол скольжения.
Таким образом, при появлении скольжения самолета восстанавливающий момент рыскания Му возникает вследствие разности лобовых сопротивлении левого и правого полукрыльев, а также вследствие момента боковой силы фюзеляжа и вертикального оперения Z.
Для оценки путевой статической устойчивости самолета по углу скольжения пользуются графиками, которые выражают зависимость коэффициента момента рыскания самолета ту от угла скольжения , т. е.
mу = f()
Коэффициент момента рыскания самолета вычисляется по формуле mу=Му/(lSV2/2), где Му—момент рыскания самолета. Он определяется опытным путем при различных углах скольжения .
Изменение коэффициента ту по углу скольжения для статически устойчивого самолета в путевом отношении показано на рис. 74,б (кривая 1).
Имея графики зависимости ту=f() можно дать характеристику путевой статической устойчивости самолета.
Наклон кривой mу=f() характеризует степень путевой статической устойчивости самолета mу, которая выражается отношением прироста коэффициента путевого момента самолета mу к приросту угла скольжения , т.е.
Как видно из определения, коэффициент mу выражает величину изменения коэффициента ту, приходящуюся на один градус изменения угла, скольжения .
Если степень путевой статической устойчивости отрицательная mу=mу/ <0, то самолет статически устойчив в путевом отношении. Действительно, при появлении скольжения, например, на правое полукрыло (>0) у устойчивого самолета возникает момент рыскания Му, стремящийся уменьшить угол скольжения. Этот момент отрицательный, так как он стремится повернуть самолет относительно оси ОY вправо. Следовательно, mу<0 и коэффициент mу=mу/ <0, т. е. отрицательный.
Таким образом, необходимым условием путевой устойчивости самолета является наличие отрицательной степени путевой устойчивости mу<0.
Величина восстанавливающих моментов рыскания Му, так же как восстанавливающих моментов крена Мх, пропорциональна углу скольжения , площади крыла S и скоростному напору (приборной скорости). Это значит, что при полете на одной и той же приборной скорости восстанавливающие моменты крена Мх и рыскания Му с изменением высоты не изменяются.
Боковая устойчивость самолета и характер его возмущенного движения в значительной степени зависят от величины поперечных и путевых демпфирующих моментов, которые возникают в процессе вращения самолета относительно осей ОХ и ОY. Поперечные и путевые демпфирующие моменты создают крыло, фюзеляж, горизонтальное и вертикальное оперение, причем наибольший поперечный демпфирующий момент создает крыло, а путевой — вертикальное оперение.
Р ассмотрим природу возникновения демпфирующего момента крена крыла Mxx. Пусть в установившемся горизонтальном полете по какой-то причине появилось вращение самолета относительно оси с угловой скоростью x. Вследствие этого каждое сечение крыла приобретает окружную скорость Ux = xz (z — расстояние от центра масс до выбранного сечения крыла). Скорость полета V, складываясь с окружной скоростью Ux, в каждом сечении крыла вызывает изменение его угла атаки, причем угол атаки опускающегося полукрыла увеличивается, а поднимающего уменьшается (рис. 75,а). Если начальный угол атаки был значительно меньше кр, то при таком его изменении подъемная сила опускающегося полукрыла увеличивается, а поднимающегося уменьшается. В результате разности подъемных сил возникает поперечный демпфирующий момент крыла, препятствующий вращению самолета. Аналогично возникают поперечные демпфирующие моменты горизонтального и вертикального оперения.
Демпфирующие моменты рыскания (путевые) Myy вертикального оперения и фюзеляжа (см. рис. 75,б) возникают аналогично продольным демпфирующим моментам горизонтального оперения и фюзеляжа. Путевые демпфирующие моменты препятствуют вращению самолета относительно оси ОY. Демпфирующий момент рыскания крыла возникает вследствие разности скоростей обтекания левой и правой его половины. Так, полукрыло, выступающее вперед, увеличивает истинную скорость обтекания на величину окружной скорости Uy в каждом сечении, а отстающее уменьшает ее на такую же величину. Различные скорости обтекания вызывают изменения величины лобовых сопротивлений половин крыла, вследствие чего возникает демпфирующий момент рыскания крыла Myy .
Демпфирующие моменты крена и рыскания при <кр всегда направлены в сторону, противоположную вращению самолета относительно осей ОХ и ОY. Такое направление демпфирующих моментов вызывает гашение боковых колебаний в процессе возмущенного движения самолета, а значит, ускоряет процесс восстановления бокового равновесия.
Боковая управляемость—это способность самолета поворачиваться вокруг продольной и вертикальной осей при отклонении элеронов и руля направления. Боковую управляемость также можно представить в виде поперечной и путевой.
П оперечная управляемость — это способность самолета изменять углы крена при отклонении элеронов. Путевой управляемостью называется способность самолета изменять углы скольжения при отклонении руля направления. Для придания самолету вращения относительно какой-либо оси необходимо нарушить балансировку моментов сил относительно этой оси. Вследствие этого появляется избыточный момент, под действием которого самолет приобретает угловое ускорение относительно оси.
Рассмотрим возникновение моментов крена при отклонении элеронов.
Пусть самолет находится в состоянии поперечного равновесия. При отклонении штурвала, например, вправо правый элерон и гаситель подъемной силы поднимаются, подъемная сила этого полукрыла уменьшается на величину Yэ2+Yсп. Левый элерон опускается, подъемная сила левого полукрыла увеличивается на величину Yэ1 (рис. 76, б). Вследствие такого изменения величины подъемных сил возникает поперечный (кренящий) момент, под действием которого самолет кренится на правое полукрыло.
Величина кренящих моментов Mx у самолета Ил-76Т определяется углом отклонения элеронов и поднимающегося гасителя подъемной силы (э, сп), скоростью полета (числом М), углом атаки и плотностью воздуха: при больших углах отклонения элеронов и гасителей подъемной силы на большой скорости полета, при малых углах атаки и большей плотности воздуха величина кренящих моментов большая.
С поднятием на высоту вследствие уменьшения плотности воздуха величина кренящих моментов, вызванных отклонением элеронов и гасителей подъемной силы уменьшается.
На больших углах атаки, особенно у самолетов со стреловидным крылом, эффект элеронов уменьшается вследствие срыва потока, который начинается в концевой части крыла.
Следовательно, при выполнении полетов на больших высотах с малыми приборными скоростями (на больших углах ) эффект элеронов несколько понижен. Об этом необходимо помнить особенно при полете в неспокойном воздухе, где приходится устранять крены, возникающие вследствие порывов ветра. Рассмотрим путевую управляемость самолета.
При отклонении руля направления возникает боковая сила вертикального оперения Zн, которая относительно нормальной оси ОY создает момент рыскания Му=ZнХво, под действием которого самолет вращается в сторону отклоненного руля, создавая угол скольжения на противоположное полукрыло (см. рис. 76,а).
Величина момента рыскания боковой силы вертикального оперения зависит от угла отклонения направления н, скорости полета и плотности воздуха. При большем угле отклонения руля направления, большей скорости полета и плотности воздуха разворачивающий момент вертикального оперения увеличивается и самолет с большей угловой скоростью вращается вокруг нормальной оси, создавая или устраняя угол скольжения. Равновесие самолета при новом угле скольжения обеспечивается благодаря путевой устойчивости самолета.
С поднятием на высоту плотность воздуха уменьшается и эффект руля направления уменьшается. При полете на больших углах атаки путевая управляемость несколько уменьшается.
9.6. Особенности боковой устойчивости
и управляемости самолета Ил-76Т
Боковая устойчивость и управляемость самолета в прямолинейном полете обеспечивает сохранение и восстановление равновесия этого режима полета. В разд. 9.5 было установлено, что при возникновении крена возникает скольжение самолета на опущенное полукрыло, а при появлении скольжения возникает крен на противоположное полукрыло.
Таким образом, при нарушении поперечного равновесия самолета нарушается и путевое, а при нарушении путевого равновесия нарушается и поперечное. Поэтому, поперечные и путевые возмущенные движения самолета необходимо рассматривать совместно, как боковые движения.
Характер бокового возмущенного движения будет определяться поперечной и путевой устойчивостью самолета. Самолет будет устойчив в боковом отношении только тогда, когда он устойчив в поперечном и путевом отношении и, кроме того, если между этими видами устойчивости существует определенное соответствие. При наличии такого соответствия между поперечной и путевой устойчивостью самолет при выходе из крена одновременно устраняет и скольжение. Если между поперечной и путевой устойчивостью такого соответствия не существует, то самолет будет неустойчив в боковом отношении. Так, при излишней путевой устойчивости самолет имеет спиральную неустойчивость, т. е. при появлении крена он входит в спираль. При излишней поперечной устойчивости появляется боковая раскачка самолета.
Рассмотрим боковое возмущенное движение самолета со стреловидным крылом на малых углах атаки при наличии боковой устойчивости. Допустим, что в полете появился правый крен (см. рис. 73). Равнодействующая подъемной силы и веса самолета Z вызывает скольжение самолета в сторону крена. При этом подъемная сила правого полукрыла увеличивается, а левого—уменьшается. Вследствие разности подъемных сил возникает восстанавливающий момент крена Мх, под действием которого самолет выходит из крена.
Одновременно с этим в результате скольжения сила лобового сопротивления правого полукрыла увеличивается, а левого—уменьшается. Кроме того, вертикальное оперение и фюзеляж создают боковую силу Z. В результате разности лобовых сопротивлений левого и правого полукрыльев, а также боковой силы Z возникает восстанавливающий момент рыскания Му, под действием которого самолет уменьшает угол скольжения.
Следовательно, под действием восстанавливающего момента крена Мx самолет уменьшает угол крена, а под действием восстанавливающего момента рыскания Му уменьшает угол скольжения. При этом, по мере уменьшения угла крена и скольжения поперечный и путевой восстанавливающие моменты уменьшаются.
Вследствие наличия угловой скорости вращения вокруг продольной оси ОХ и нормальной—ОY возникают демпфирующие поперечные и путевые моменты, которые тормозят вращение самолета, как в процессе нарушения, так и в процессе восстановления бокового равновесия.
Уменьшение восстанавливающих моментов по мере уменьшения углов крена и скольжения самолета и наличие демпфирующих моментов обеспечивает уменьшение угловых скоростей вращения относительно осей ОХ и ОY и восстановления заданного бокового равновесия.
Если между поперечной и путевой устойчивостью существует определенное соответствие (правильное сочетание), то к моменту выхода из крена самолет не будет иметь скольжения, а значит, боковое равновесие самолета (поперечное и путевое) восстановится. Такое соответствие между поперечной и путевой устойчивостью у самолета Ил-76Т существует на основном диапазоне летных углов атаки, но на больших углах атаки это соответствие нарушается.
Изменение путевой и поперечной устойчивости приводит к тому, что при восстановлении бокового равновесия самолет быстро выходит из крена, но медленно уменьшает угол скольжения. Так, например, к моменту выхода из левого крена самолет еще имеет скольжение на левое полукрыло, а это значит, что подъемная сила левого полукрыла остается дольше подъемной силы правого, и самолет начинает крениться на правое полукрыло. С увеличением угла крена появляется скольжение на правое полукрыло. Вследствие восстанавливающих и демпфирующих моментов крена увеличение угла крена прекращается, а вследствие восстанавливающих и демпфирующих моментов рыскания прекращается увеличение угла скольжения. Самолет под действием восстанавливающих боковых моментов начинает выходить из правого крена, уменьшая угол скольжения. Но опять к моменту выхода из крена самолет еще имеет скольжение на правое полукрыло, а значит, подъемная сила правого полукрыла будет больше .подъемной силы левого, и самолет вновь начинает крениться на левое полукрыло и т. д.
Такой характер бокового движения (боковой неустойчивости) самолета на больших углах атаки получил название боковой раскачки самолета. Для предупреждения боковой раскачки необходимо обеспечить соответствие между поперечной и путевой устойчивостью путем повышения путевой устойчивости или некоторого снижения поперечной.
Ранее отмечалось, что на самолете Ил-76Т крыло имеет обратное поперечное =-3°, которое несколько уменьшает поперечную устойчивость. Благодаря этому самолет медленней выходит из крена, одновременно уменьшая угол скольжения. Но и при наличии обратного на больших углах атаки полное соответствие между поперечной и путевой устойчивостью не достигается, а это значит, что самолет на этих углах может иметь боковую раскачку.
Для предупреждения боковой раскачки в полете не следует допускать выхода самолета на большие углы атаки, а также скольжение в процессе разворотов. Если в полете появилась боковая раскачка, то необходимо уменьшить угол атаки самолета.
Кроме того, для более быстрого устранения боковой раскачки в процессе выхода самолета из крена и скольжения необходимо отклонением элеронов замедлять быстрый выход самолета из крена, а рулем направления ускорять выход со скольжением. Для этого в процессе выхода самолета из крена следует несколько отклонять штурвал управления элеронами и перемещать педаль управления рулем направления в сторону крена. При таком отклонении элеронов несколько уменьшается поперечный восстанавливающий момент, а отклонением руля направления несколько увеличиваются путевые восстанавливающие моменты. Поэтому к моменту выхода из крена самолет не будет иметь скольжения, а значит, боковое равновесие восстановится.
Боковая раскачка самолета Ил-76Т может иметь место при неработающих каналах демпфирования по крену и курсу системы САУ.
При работающих демпферах крена и рыскания , включенных в системы управления элеронами и рулем направления, возникают дополнительные демпфирующие моменты крена в результате отклонения элеронов по сигналу датчика угловой скорости х и моменты рыскания вследствие отклонения руля направления по сигналу датчика угловой скорости у. Благодаря этому создаются моменты элеронов и руля направления, направленные против вращения самолета относительно осей ОХ и ОY, а колебания самолета практически не возникают или имеют малую амплитуду с большой степенью затухания mзат.
К инематические системы управления с включенными каналами демпфирования по крену и курсу показаны на рис. 77.
Динамика бокового движения самолета характеризуется степенью затухания боковых колебаний mзат, величина которой показывает уменьшение амплитуды колебаний Аt за один период, т. е. mзат = At/At+T (см. рис. 69,а) и отношением максимальных значений угловых скоростей крена х и рыскания у, т. е. =x/y.
На рис. 78 изображены графики зависимости mзат и самолета Ил-76Т (G=130 т, H=3000—4000 м, xт=30% ba) от индикаторной скорости Vi при включенных и выключенных демпферах крена и рыскания . Из графиков видно, что при включенных. демпферах крена и рыскания на скоростях до 300 км/ч ИН mзат достигает 3 при == 1,5... 1,7, т. е. за один период амплитуда колебаний уменьшается в 3 раза при условии, что максимальное значение угловой скорости выхода из крена x в 1,5...1,7 больше чем y выхода со скольжения. На скоростях более 300 км/ч ИН переходной процесс восстановления бокового равновесия апериодический, т. е. самолет восстанавливает боковое равновесие (устраняет угол крена и угол скольжения ), не совершая колебаний.
П ри выключенных демпферах и на малых скоростях mзат только незначительно больше единицы (на V==250 км/ч ИН mзат 1,13), но с увеличением скорости mзат несколько возрастает (V==500 км/ч ИН mзат= 1,37). Это означает, что при выключенных демпферах и колебания затухают медленно, особенно на малых скоростях. Учитывая это, при полете с неработающими демпферами все эволюции самолета следует выполнять плавно и строго координированно, не превышая приборной скорости 500 км/ч.
Боковая управляемость самолета характеризуется величиной коэффициента момента крена mх при отклонении элеронов и коэффициенту момента рыскания ту при отклонении руля направления.
Графики зависимости коэффициента момента крена mx от угла атаки при различном отклонении штурвала элеронов и коэффициента момента рыскания ту от угла скольжения при различном положении руля направления н изображены на рис. 79. Известно, что управление самолетом по крену обеспечивается совместным отклонением элеронов и гасителей подъемной силы. Как видно из графиков, при полностью выпущенной механизации крыла (см. рис. 79,б) коэффициент момента крена mx при отклонении штурвала на определенный ход хэ (0,5 хэmax, xэmax) остается практически постоянным вплоть до критических углов атаки. При убранной механизации (см. рис. 79,а) mx несколько меньше, но остается достаточным для обеспечения нормальной управляемости самолета по крену. Расчетным условием для определения необходимой эффективности руля направления являются условия обеспечения балансировки самолета в случае продолженного взлета с одним неработающим критическим двигателем, а также посадки с боковым ветром. Как видно из графиков (см. рис. 79) эффективность руля направления практически сохраняется постоянной во всем диапазоне его отклонения, как при взлетно-посадочной, так и в крейсерской конфигурации самолета.
С целью уменьшения нагрузок на вертикальное оперение при выполнении крейсерского полета на больших скоростях допустимый угол отклонения руля направления равен 9°. Для обеспечения этого в системе управления РН установлено дополнительное загрузочное устройство (см. рис. 77,а поз. 4).
При больших числах М у самолетов со стреловидным крылом наблюдается обратная реакция самолета по крену на отклонение руля направления.
Р ассмотрим поведение самолета со стреловидным крылом при отклонении руля направления на малых и больших числах М (близких к Мкр).
При отклонении руля направления, например вправо, вертикальное оперение создает боковую силу Zн, направленную влево. Под действием момента этой силы относительно нормальной оси самолет разворачивается в сторону отклоненного руля (вправо), создавая угол скольжения на левое полукрыло (рис. 80). Тогда угол эффективной стреловидности левого полукрыла уменьшается, а правого—увеличивается.
В результате этого эффективная составляющая скорость V1 левого полукрыла и его подъемная сила увеличиваются, а правого — уменьшаются. Вследствие разности подъемных сил возникает кренящий момент самолета на правое полукрыло (рис. 80, поз. 1).
Таким образом, при отклонении руля направления на малых числах М самолет вследствие скольжения кренится на то полукрыло, куда отклоняется руль.
Такую реакцию на отклонение руля направления самолет будет иметь, если он устойчив в поперечном отношении, т. е. при скольжении на левое полукрыло самолет кренится на правое и наоборот. Это движение называют прямой реакцией самолета по крену на отклонение руля направления.
При числах М=0,79. ..0,8 происходит уменьшение прямой реакции на отклонение руля направления. При полете на числах М 0,82 (рис. 80,б) наблюдается обратная реакция самолета по крену на отклонение руля направления.
Е сли в полете на числах М, близких к критическому, отклонить руль направления вправо, то в этом случае точно также, как и при малых числах М появится скольжение на левое полукрыло. Эффективная стреловидность и Мкр левого полукрыла уменьшатся, правого—увеличатся. Так как полет происходит на числах М, близких к Мкр, то левое полукрыло при определенном угле скольжения может сказаться на числе М, большем Мкр. На этом полукрыле возникнут сверхзвуковые зоны и скачки давления, в результате которых его подъемная сила резко уменьшится. Увеличение эффективной стреловидности правого полукрыла вызовет увеличение его Мкр. Поэтому правое полукрыло будет работать на докритических числах М и скачков давления не будет. Уменьшение подъемной силы и левого полукрыла вызовет накренение самолета влево.
Таким образом, при отклонении руля направления вправо самолет кренится на левое полукрыло и, наоборот. Это и есть обратная реакция самолета по крену на отклонение руля направления.
0>0>0>0>
Достарыңызбен бөлісу: |