Example 1. Let us consider this integral:
2
3
?
dx
x
Solution. To find the value of integral, we will use the definition of absolute value of
function. Then:
.
0
,
,
0
,
0
,
0
,
x
x
x
x
x
x
Then we divide the interval [-3, 2] to positive and negative parts. So:
.
2
13
0
2
4
2
9
0
2
2
x
2
0
2
0
3
2
2
0
0
3
2
3
x
x
xdx
dx
x
dx
Therefore, the solution of given integral is equal to
2
13
.
Example 2. Calculate the value of following integral:
3
0
?
2 dx
x
Solution. At first we define zeroes of function under integrals: x – 2 = 0; x = 2 is the
root of х – 2.
So
.
2
,
2
,
2
,
0
,
2
),
2
(
x
if
x
x
if
x
if
x
x
f
Now the interval of [0, 3] consider as the sum of two intervals: [0, 2] and [2, 3]. So we
will calculate the given integral as the sum of two integrals. Then
3
0
2
0
3
2
3
2
2
2
0
2
2
5
4
2
6
2
9
4
2
2
2
2
2
)
2
(
)
2
(
2
x
x
x
x
dx
x
dx
x
dx
x
.
Example 3. Calculate the integral:
0
cos dx
x
.
Solution: To calculate this integral, first we define the value of function under integral at
intervals [0,
]. So
.
,
2
,
cos
,
2
,
0
,
2
,
0
,
cos
cos
on
x
x
on
x
x
If we use the value specified at the top, during the solution of the integral, then we get the
integral as the sum of two integrals. So, the result will be in the following form:
0
2
0
2
.
2
1
1
2
sin
sin
0
sin
2
sin
)
cos
(
cos
cos
dx
x
xdx
dx
x
1.2. Integral of integer value function.
[f(x)] is the greatest integer value which is not greater than f(x). If f(x)
Z, [f(x)] is not
continuous for the points of discontinuity (i.e. for critical points) there is not integral. For this
reason we will divide the interval into subintervals by using discontinuity points.
Example 1. See the following integral:
3
1
]
1
[
dx
x
=?
Solution. In order to integrate this function, we divide the interval [-1, 3] into
subintervals:
if - 1 ≤ x < 0 then ([x - 1]) = - 2;
if 0 ≤ x < 1 then ([x - 1]) = - 1;
if 1 ≤ x < 2 then ([x - 1]) = 0;
if 2 ≤ x < 3 then ([x - 1]) = 1.
Now, using the obtained values we calculate this integral. Then
.
2
2
3
0
1
2
0
0
)
(
)
2
(
1
0
)
1
(
)
2
(
])
1
([
3
2
1
0
0
1
2
1
3
2
3
1
0
1
1
0
x
x
x
dx
dx
dx
dx
dx
x
Example 2. Let us consider this integral:
2
1
])
2
([
dx
x
x
.
Solution. In this case, is only one interval. If, 1 ≤ x < 2, then
3
]
2
[
x
. Now put the value 3 in
the integral and integrate. Then
2
1
2
1
2
1
2
.
2
9
2
3
2
12
2
1
3
2
4
3
2
3
3
])
2
([
x
xdx
dx
x
x
Example 3. Let us consider this integral:
3
1
?
2
dx
x
Solution. To calculate this integral, from the beginning divide the interval [-1, 3] on the
subintervals:
if
0
1
x
then
;
1
2
x
if
1
0
x
then
;
0
2
x
if
2
1
x
then
;
0
2
x
if
3
2
x
then
1
2
x
.
Using the values of functions, obtained in subintervals, we compute the integral, then
3
1
0
1
1
0
2
1
3
2
3
2
0
1
0
2
3
0
0
1
0
0
0
)
(
1
0
0
)
1
(
2
x
x
dx
dx
dx
dx
dx
x
.
1.3. Integral of signum function.
F(x) = sgn g(x) =
.
0
)
(
,
1
,
0
)
(
,
0
,
0
)
(
,
1
x
g
x
g
x
g
In these type of questions we will divide the interval into two parts as negative and positive
intervals. Because f(x) is not continuous at the point where g(x) = 0.
Example 1.
1
2
.
)
1
sgn(
dx
x
Solution. x + 1 = 0 => x = - 1. At first, we should find critical points. Now, we define value
of interval of function under integral:
sgn(x + 1) =
.
1
,
1
,
1
,
0
,
1
,
1
x
x
x
Values which are given above are we use to integrate the function. Then
1
2
1
2
1
1
1
1
1
2
.
1
1
1
2
1
1
1
)
1
sgn(
x
x
dx
dx
dx
x
Example 2. Given this integral:
4
3
2
)
4
sgn(
dx
x
.
Solution. As in the example, at first we will find critical points:
.
2
0
4
2
x
x
Then,
the value of sgn(
2
x
- 4) we will find as in the below:
.
2
2
,
1
,
2
,
0
,
2
2
,
1
)
4
sgn(
2
x
x
x
or
x
x
Keeping in mind given values we compute the integral. From this
2
3
2
2
4
2
4
2
2
2
2
3
4
3
2
.
1
2
4
2
2
3
2
)
(
)
4
sgn(
x
x
x
dx
dx
dx
dx
x
Example 3. We will define the value of
4
3
)
3
sgn(
dx
x
integral.
Solution. We compute this integral dividing into steps. The first step is to find the critical points
x – 3 = 0 => x = 3. The second step is to use getting values in integrating given function:
.
3
,
1
,
3
,
0
,
3
,
1
)
3
sgn(
x
x
x
x
Then
.
5
3
4
3
3
)
3
sgn(
4
3
3
3
4
3
3
3
4
3
x
x
dx
dx
dx
x
Literaturе
1. V.V. Konev “The elements of mathematics”, Text Book, Изд. Томского
политехнического университета, 2009.
2. Ahmet Çakir “Integral”, Zambak publishing, 2005.
3. J. C. Burkill “A first course in mathematical analysis”, Cambridge University Press,
1962.
УДК 517,51
2,
r
W
КЛАСЫ ФУНКЦИЯЛАРЫН
2
L
НОРМАСЫНДА ЖУЫҚТАУ
Ә.Б. Өтесов, Б.Б. Ахметов
Қ. Жұбанов атындағы Ақтөбе өңірлік мемлекеттік университеті
В статье введен класс функций с ограничениями на коэффициенты Фурье и
получены теоремы приближения для функции из указанного класса.
In article is incorporated class to functions with restrictions on Fourier coefficients and
are received theorems of the approach for function from specified class.
Ключевые слова: класс функций, коэффициенты Фурье, ряд Фурье, оператор
приближения.
Key words: class to function, Fourier coefficients, Fourier series, operator of the
approach.
Достарыңызбен бөлісу: |