дисперсию
_
2
σ
.
Причем
2
_
2
σ
σ
→
лишь при
∞
→
n
.
При ограниченном числе измерений
n вводят коэффициент Стьюдента
t
p
, определяемый по специальным таблицам в зависимости от числа
измерений и принятой доверительной вероятности
Р.
Тогда средний результат измерений находится с заданной
вероятностью
Р в интервале
n
t
x
x
p
σ
±
.
(1.14)
Для уменьшения случайной погрешности есть два пути: повышение
точности измерений (уменьшение
х
σ
) и увеличение числа измерений
n
с целью использования соотношения (1.5). Считая, что все возможности
совершенствования техники измерений использованы, рассмотрим второй
путь. При этом следует отметить, что уменьшать случайную
составляющую погрешности целесообразно лишь до тех пор, пока общая
погрешность
измерений
не
будет
полностью
определяться
систематической составляющей
∆
. Если систематическая погрешность
определяется классом точности средства измерения, то необходимо, чтобы
доверительный интервал
n
t
x
p
σ
±
был существенно меньше
с
∆
.
Обычно принимают от
2
с
о
∆
≤
∆
до
10
с
о
∆
≤
∆
при
Р=0,95. В случае
невозможности выполнить эти соотношения необходимо коренным
образом изменить методику измерения. Для сравнения случайных
погрешностей с различными законами распределения обязательно
использование показателей, сводящих плотность распределения к одному
или нескольким числам. В качестве таких чисел и выступают
среднеквадратическое
отклонение,
доверительный
интервал
и доверительная вероятность.
Как правило, считают, что систематические погрешности могут быть
обнаружены и исключены. Однако в реальных условиях полностью
исключить систематическую составляющую погрешности невозможно.
Всегда остаются какие-то неисключенные остатки, которые и нужно
учитывать, чтобы оценить их границы. Это и будет систематическая
погрешность измерения. В отличие от случайной погрешности,
выявленной в целом вне зависимости от ее источников, систематическая
погрешность рассматривается по составляющим в зависимости от
источников ее возникновения, причем различают методическую,
32
инструментальную и субъективные составляющие погрешности.
Достарыңызбен бөлісу: