Возникновение волн на воде связано с действием силы поверхностного натяжения и силы тяжести, но отказываться от их рассмотрения ввиду особой их природы не следует, так как основные свойства волн более наглядно можно продемонстрировать именно на этих волнах с помощью волновой ванны. При изучении упругих волн учащиеся получают первоначальное представление о скорости распространения волн. Известно, что в волновом движении различают скорость распространения волнового фронта (волновой поверхности) в среде, т.е. фазовую скорость, и скорость переноса энергии (перемещения волнового пакета), т.е. групповую скорость. Для упругих волн фазовая скорость распространения в жидких, твердых и газообразных средах в очень широком интервале частот остается постоянной. Групповая скорость совпадает с фазовой, поэтому в средней школе нет необходимости рассматривать понятие групповой скорости. Таким образом, при изучении волнового движения школьники встречаются с понятием скорости распространения волны, под которым подразумевается фазовая скорость, т.е. скорость перемещения гребня или впадины - в поперечной волне и сгущений или разрежений - в продольной (понятие волновой поверхности не рассматривают, так как пока отсутствует понятие фазы). Следует обратить внимание на то, чтобы учащиеся четко разграничивали понятия скорости распространения волны и скорости колебательного движения точек в волне. Для этого целесообразно рассмотреть конкретные примеры и задачи. Как известно, в упругих средах скорость волн определяется упругими свойствами среды по отношению к тому или иному типу деформаций и плотностью самой среды. На опыте, изменяя натяжение шнура (резиновой трубки), можно проиллюстрировать зависимость скорости распространения волн от упругих свойств среды, показав, что колебания распространяются быстрее, если сильнее натянуть трубку или шнур. Зависимость между скоростью волны и плотностью среды показывают, возбудив колебания сначала пустой трубки, а затем наполненной водой. Поясняют также, что в твердом теле продольные и поперечные волны распространяются с различной скоростью, так как в одном случае их распространение связано с деформацией сжатия, в другом - сдвига и упругие свойства твердого тела в отношении этих видов деформации неодинаковы, отсюда различие и в скорости распространения этих волн. Итак, скорость волны зависит от свойств среды и не зависит от частоты. Так как обычно рассматривают волны, в которых амплитуда колебаний невелика, то скорость волны можно считать не зависящей от амплитуды. После того как учащиеся ознакомились с образованием продольных и поперечных волн и со скоростью волны, можно ввести еще одно важное для волнового движения понятие - длину полны. Понятие о длине волны помогает ученикам усвоить важное свойство волн - периодичность в пространстве. Определяют длину волны как расстояние, на которое распространяется волна за один период. Это определение не требует введения понятия о фазе и связывается с уже хорошо знакомым учащимся понятием равномерного движения и его уравнением, при этом легче усваивается формула Длина волны - это расстояние между двумя ближайшими точками, одновременно проходящими положение равновесия и движущимися в одну сторону. Следует выяснить далее, что точки, удаленные друг от друга на расстояние (где п - целое число), колеблются одинаково. Как показывает практика преподавания, большие затруднения при изучении волновых процессов вызывает вопрос о периодичности волны - во времени и в пространстве. При изучении колебаний учащиеся узнали о периодичности во времени физических величин, описывающих колебательный процесс, познакомились с графиком зависимости координаты колеблющейся точки от времени. При рассмотрении упругих волн они встречаются с графиками, которые внешне похожи на последние, - это график зависимости смещения (координаты) колеблющихся точек от их расстояния до источника волн (рис.11.11) для фиксированного момента времени и график зависимости смещения (координаты) от времени (рис.11.12) для фиксированной точки среды в волновом процессе. Рис. 11.12 Рис. 11.13 Поскольку уравнение бегущей волны в школе не изучают, то такое важнейшее свойство волн, как периодичность во времени и в пространстве, можно раскрыть с помощью эксперимента и графических построений. Чтобы облегчить усвоение этого материала, школьникам предлагают ряд графических задач и вопросов. Анализ формулы позволяет уяснить характер зависимости между величинами, которые она связывает. Эту зависимость проверяют на опыте, например, изменяя частоту вибратора в волновой ванне, наблюдают изменение длины волны, так как скорость волны, определяемая свойствами среды, остается постоянной величиной. Акустические явления Изучение акустических явлений, т. е. распространения в упругой среде механических колебаний, способствует расширению понятия волны - от волн, непосредственно воспринимаемых визуально, до невидимых. Это в какой-то мере готовит учащихся к восприятию физической сущности электромагнитных волн. Кроме того, при изучении звуковых явлений можно закрепить те знания учащихся о волнах и их характеристиках, которые к тому времени они имеют. Звуковые волны изучают в следующей последовательности. Вначале учащихся знакомят с источниками и приемниками звука. Рассматривают примеры источников звука, совершающих колебания с собственными частотами (камертон, струна), и примеры излучателей вынужденных колебаний, преобразующих электрические колебания в звуковые. Можно показать и приемники звука - микрофоны, вспомнить устройство угольного микрофона и ознакомить с устройством электродинамического микрофона. Затем объясняют механизм распространения звуковых волн. Демонстрируют сгущения и разрежения в упругой среде при распространении в ней звуковой волны, продольный характер звуковых волн, необходимость среды с упругими свойствами для их распространения. Последнее может быть проиллюстрировано на опыте, в котором источник звука помещают под колокол воздушного насоса и постепенно откачивают воздух, а затем повторяют опыт, окружив тот же источник слоем ваты, поролона или слоем пористого материала.
Достарыңызбен бөлісу: |