ПӘннің ОҚУ-Әдістемелік материалдары


Дәріс 25, 26 - Поликонденсация



бет6/7
Дата14.06.2016
өлшемі2.12 Mb.
#135829
1   2   3   4   5   6   7

Дәріс 25, 26 - Поликонденсация

Дәріс жоспары:



  1. Поликонденсациялану процестерінің жіктелуі

  2. Поликонденсациялану механизмі

  3. Үш өлшемді поликонденсациялану. Поликонденсациялаудағы қосалқы реакциялар.

  4. Поликонденсациялануды жүргізу тәсілдері

  5. Поликонденсациялау және полимерлеу процестерінің ерекшеліктері

1. Поликонденсациялау деп көп функционалды топтарының әрекеттесуінен ЖМҚ түзілу реакцияларын айтады. Поликонденсациялау кезінде көп жағдайда төмен молекулалық қосалқы заттар бөлінеді. Сондықтан бұл реакция кезінде түзілетін полимерлік буындардың құрамы бастапқы мономерлердің құрамынан өзгеше болады.

Поликонденсациялау мономерлері ретінде екі немесе одан да көп функционалды топтары (OH, OR, NH2, Cl, COOH, COOR, COCl, SiOH, SiOR) бар қосылыстар қолданылады.

Поликонденсациялану екі түрлі функционалдық топтардың әрекеттесуінен жүреді. Жалпы түрде бифункционалды мономерлердің поликонденсациялану реакциясы мына тевдеумен өрнектеледі:

n(a-A-a) + n(b-B-b) → a – [- AB-]n – b + (2n-1)ab



мүндағы а-А-а, b-B-b бастапқы мономерлер а және в функционалды топтар: ab — бөлінетін қосалқы зат.

Түзілген полимерлердің қүрылымына қарай поликонденсациялану сызықты және торланған (үш өлшемді) деп бөлінеді.

Егер поликонденсациялауга тек бифункционал топтары бар мономерлер қатысса, онда сызықты макромолекула түзіледі. Мұны сызықты поликонденсациялану дейді.

Немесе




Егер поликонденсациялануға үш немесе одан да көп функционал топтары бар мономерлер қатысса, одан алдымен тармақталған, содан кейін торланған макромолекула түзіледі. Мұны тармакталған немесе торланған поликонден­сациялау деп атайды.

Мономерлердің табиғатына байланысты гомополиконденсациялау және гетерополиконденсациялау деп екіге бөледі.Егер поликонденсациялануға әр түрлі функционалды тобы бар біртекті мономер қатысса, оны гомополиконденсациялау деп атайды

Егер реакция екі типті мономерлердің функционал топтарының бір-бірімен әрекеттесуі арқылы жүрсе, оны гете­рополиконденсациялау дейді.

Поликонденсациялануға екі немесе одан да көп бір тектес мономерлер катысса, оны сополиконденсациялау деп атайды.

Поликонденсациялану механизмін қарастырғанда функ­ционал топтарының реакциялық қабілеттігі молекуланың мөлшеріне және реакциялық ортаның түтқырлығына байланысты емес деп жорамалданады. Сызықтық поликон­денсациялану жылдамдығы бір функционал тобының а немесе Cb) концентрациясының өзгерісімен анықталады:



мұүндағы [Ckatl — катализатордың концентрациясы, ол процесс барысында түрақты.

а ] = b ] = ] деп, мына тендеуді алуға болады:



Tеңдеуді интегралдап, мономер концентрациясын түрлену тереңдігімен байланыстыратын тендеу шығады:

Мұндағы  - түрлену тереңдігі, 0 ] және] функционалды топтардың бастапқы және соңғы концентрациялары. Түзілетін полимерлердің орташа поликонденсациялану дәрежесі Рn мына өрнекпен анықталады:





Жоғары молекулалық өнім түрлену дәрежесі тек q = 0,95 болғанда ғана түзіледі. Түрлену дәрежесі одан кем болса тек олигомер түзіледі. Жоғарыдағы теңдеуден поликонденсациялану дәрежесінің Р шекті мәні q өскен сайын арта береді. Бірақ іс жүзінде Р=103 бо­луы өте қиын, өйткені бастапқы қоспада функционал топтарының концентрациясы бірдей емес. Бұл жағдайда поликонденсациялану дәрежесінің шекті мәні былай анықталады:



Мұндағы  функционал топтары концентрациясының қатынасы, оны эквиваленттік коэффициент дейді.

ЖМ өнім алу үшін қоспаның құрамы стехиометрлікке жақын болу керек, мысалы r = 0,91 болса Рn=10, r=0,99 болса Рn=100, r=0,999 болса Рn= 1000 болады.

Үш өлшемді поликонденсацияланудың ерекше белгісі — жүйенің күрт гель түріне ауысуы. Гель түзілу нүктесіндегі түрлену дәрежесі мономердің функционалдығымен аныкталады. Функционалдық топтардың экви-мольдік қатынасында, гель түзу мен реакциянын аяқталу дәрежесі X арасындағы байланыс Карозерс тендеуімен анықталады:



Мұндағы fор — орташа функционалдық дәреже, n →∞ болса, Х = 2/fор. Егер fор = 2 болса, X = 1, яғни реакция нәтижесінде гель түзілмей тек сызықтық полимерлер түзіледі егер fор = 4 болса, онда реакция гель түзілгенше тек 50% қана жүреді.

Сызықтық поликонденсациялауды балқымада, ерітіндіде, фазалар шекарасында және қатты немесе газ күйде жүргізеді. Балқымада поликонденсациялау 200-300°С температурада инертті газ атмосферасында жүргізіледі. Оның артықшылығы жоғары молекулалық полимерді үлкен жылдамдықпен, еріткішсіз алуға болады, кемшілігі — балқыма алу үшін жоғары температура керек. Осы тәсілмен полиамидтер, полиэфирлер алады.

Ерітіндіде поликонденсациялаудың екі түрі бар. Біріншісінде — полимер және мономер еріткіште ериді, ал екіншісінде еріткіште тек қана мономер ериді. Бүл тәсілде қосымша өнім реакциялық ортадан толық бөлінеді, сондықтан алынған полимердің молекулалық массасы жоғары болады. Бүл тәсілдің негізгі ерекшелігі полимердің молекулалык массасы мен реакция жылдамдығының мономер концентрациясына тәуелділігі. Негізгі кемшілігі — қымбат және зиян еріткіштер қолданылады, оларды полимерден бөлу де қиын.

Фазалар шекарасында поликонденсациялау бір-бірінде ерімейтін екі сұйықтардың қатысуымен жүреді. Компоненттердің реакциялык ортаға жетуі олардың фазааралық шекараға диффузиясымен анықталады, сол себепті бастапқы мономерлерді стехиометрлік қатынаста сақтау қажет емес. Бүл тәсілдің тағы бір ерекшелігі, түзілетін полимерлердің молекулалық массасы жоғары болып келеді. Фазааралық поликонден­сациялау арқылы полимер ал у мен қатар, олардан эр түрлі даяр өнімдер, мысалы, талшықтар, қабықшалар алуға болады. Тәсілдің кемшілігі, алынған полимерлер онша таза және біркелкі емес.

Поликонденсациялау

  1. Қарапайым акты екі би- немесе полифункционалды қосылыстардың бір бірімен реакцияласуы

  2. Әр қарапайым акт кезінде скі активті орталық жойылады (әр молекуладан бір функционалды топ), реакция өнімі екі немесе одан да көп функци­онал тобы бар молекула.

  3. Мономер молекуласының саны процестін басталу кезінде-ақ азаяды, полимерлеу дәрежесі 10 жеткенде 1% - тей ғана мономер молекуласы қалады. Реакция барысында полимердің молекулалык массасы біртіндеп өседі.

  4. Процестің ұзыктығы белгілі бір шекке дейін полимердің молекулалық массасының өсуіне эсер етеді, полимердің шығымы процестің ұзақтығына байланысты емес.

Полимерлеу

  1. Қарапайым ақты активті орталыққа моно­мер молекуласының біртіндеп қосылуы.

  2. Әр карапайым актіде активтік орталық жаңадан түзіледі, ре­акция өнімі активті орталық (макроради­кал, карбкатион, карбанион).

  3. Мономер саны күрт азаяды, полимер процестің басында-ак, түзіледі, полимердің молекулалық массасы бүдан кейін өзгермейді.

  4. Процестің ұзактығы полимердің шығымын арттырады, полимердің молекулалық мас­сасы процесс ұзақтығынан өзгермейді.

Дәріс материалдарын игергеннен кейін білуге қажетті негізгі түсініктер: поликонденсациялық процестердің классификациясы, поликонденсациялану кинетикасы, полимердің ММ әсер ететін факторлар

Өзін өзі бақылауға арналған сұрақтар:



  1. Поликонденсацияланудың полимерленуден айырмашылығы неде?

  2. Түзілген өнімдердің құрылымына бастапқы мономерлердің табиғаты қалай әсер етеді?

  3. Қайтымды және қайтымсыз поликонденсациялауды сипаттаңыз.

  4. Мономер концентрациясы және температура поликонденсациялану процесіне қалай әсер етеді?

Ұсынылған әдебиеттер:

1. Стрепихеев А.А., Деревицкая В.А. Основы химии высокомолекулярных соединений: Уч. пособие. М.: Химия, 1976. С. 129-160

2. Жоғары молекулалық қосылыстар химиясы. Авторлар ұжымы.Алматы: Санат. – 1995. 59-74 б

3. Киреев В.В. Высокомолекулярные соединения: Учебник для вузов. М.: Высш.школа, 1992. С.288-376

4. Шур А.М. Высокомолекулярные соединения: Уч. Пособие. 3-е изд., перераб. и доп. М.: Высшая школа, 1981. С.43-81

5. Тагер А.А. Физико-химия полимеров: М.: Химия, 1978. С. 49-55


Дәріс 27, 28 – Полимерлерді түрлендіру

Дәріс жоспары:



  1. Полимерлену дәрежесі өзгермейтін реакциялар

  2. Полимерлену дәрежесі өсетін реакциялар

  3. Полимерлену дәрежесі төмендейтін реакциялар

Полимерлердің химиялық түрлену реакциялары негізінен үшке бөлінеді.

  1. Полимерлену дәрежесі өзгермейтін реакциялар. Бұған полимерге ұқсас түрлендірулер және ішкі молекулалық ре­акциялар жатады.

  2. Полимерлену дәрежесі өсетін реакциялар. Бұған молекулааралық реакциялар, жалғанған және блоксополимерлену кіреді.

  3. Полимерлену дәрежесі төмендейтін реакциялар, яғни полимерлердін деструкциялану реакциялары.

Макромолекуланың функционал топтарының немесе негізгі тізбектегі атомдардың төмен молекулалық қосылыстармен реакциясын полимерге ұқсас түрлену деп атайды. Реакция кезінде макромолекулалардағы химиялық байланыстар үзілмейді және онын қаңқасының құрылымы өзгермейді. Полимерге ұқсас түрленулер негізінен екі бағытта жүреді.

1. Полимерлер алу. Мүндай реакция мономерлері белгісіз немесе полимерлену реакциясына түспейтін мономерлердің полимерлерін алу үшін қолданылады.

2. Жаңа химиялық қасиеттері бар полимерлер алу. Бұл реакцияларды басқаша полимерлерді химиялык модификациялау деп те атайды. Химиялық модификациялаудың нәтижесінде алуан түрлі қасиеттері бар жаңа полимерлер алуға болады.

Бір макромолекулаға тән функционал топтарының немесе негізгі тізбек атомдарының химиялык реакцияларын ішкімолекулалық реакциялар деп атайды. Реакция нәтижесінде макромолекуланың құрамы өзгереді. Бұл реакцияларды екі түрге бөлуге болады: макромолекулада қанықпаған байланыстар туғызатын реакциялар және ішкімолекулалық циклдену. Мысалы, поливинил спиртінен және поливинилхлоридтен поливиниленді алу. Циклдеу реакциялары арқылы аса маңызды полимерлер алуға болады. Поливинил спирті формальдегадпен әрекеттесіп поливинилформаль түзеді:



Молекулааралық реакциялар деп бірнеше макромолекулалардың бір-бірімен әрекеттесу реакцияларын айтады. Бұл реакцияларды тігілу деп те атайды, ол тігуші агенттердің немесе жылудың, жарықтың, радиация сәулелерінің әсерінен жүреді. Түзілген торлы полимерлер ерігіштігін және қайтымсыз пластикалық деформациясын жояды. Олардың физика-химиялық сипаттамалары өзгереді. Тордың жиілігі артқан сайын, әсіресе, полимердің қаттылығы, жұмсау температурасы және жоғары температураға шыдамдылығы артады.

Молекулааралық реакцияларға вулкандау және қатайту реакциялары жатады. Күкіртті вулкандауды қос байланысы бар каучук қоспасын күкіртпен 130-160°С қыздыру арқылы жүргізеді. Күкіртсіз вулкандау макромолекуласында кос байланыс жоқ каучуктер үшін қолданылады.

Қатаю деп реакцияға қабілетті сүйық олигомердің қатты, ерімейтін, балқымайтын үш өлшемді қайтымсыз полимерге айналуын айтады. Қатаю әр түрлі пластмассалар, герметиктер, желімдер, лактар және бояулар өндірісінің негізгі технологиялық процестерінің бірі. Қатаю олигомердің функционал топтарының бір-бірімен химиялық әрекеттесуінен немесе арнайы қосылған реагенттер қатайтқыштардың әсерінен жүреді. Олигомердің және қатайтқыштың құрылымына, процестің жағдайына байланы­сты қатаю механизмі полимерлену, поликонденсациялану және аралас болып келеді.

Полимерлену дәрежесін төмендететін реакциялар макромолекуланың негізгі тізбегінің үзілуі арқылы жүреді және оларды деструкциялану (құрылымсыздану) деп атайды.

Термиялық деструкциялану деп полимердін молекулалық тізбегінің жылудың әсерінен үзілуін айтады. Полимерді қыздырғанда бірнеше айырылу реакциялары жүруі мүмкін. Оларды негізінен екі түрге бөлуге болады: полимерсіздену (деполимерлену) және орынбасарлар реакциясы.

Деполимерлену полимердің негізгі тізбегі қаңкасының үзілуімен сипатталады және әр аралық сатыда түзілетін реакция өнімдері бастапқы мономерге ұқсас болады. Реакцияның соңғы өнімдері алкандар мен алкендер болуы мүмкін. Карботізбекті полимердің температураға төзімділігі С-С байланыстардың беріктігіне байланысты. Механикалық ыдырауға полимерлердің молекулалық тізбегінің механикалық әсерлерден ыдырауы жатады. Химиялық ыдыраудың түрлері: ацидолиз, гидролиз, алкоголиз, аммонолиз және т.б.

Дәріс материалдарын игергеннен кейін білуге қажетті негізгі түсініктер: полимерлердің химиялық реакциялардың ерекшеліктері, ішкімолекулалық процестер, полимераналогты түрлендіру, деструкция түрлері, макромолекулалардің тігілуі – каучуктерді вулкандау, қатаю, блок-сополимерлену және жалғанған сополимерлерді алу

Өзін өзі бақылауға арналған сұрақтар:


  1. Полимерге ұқсас түрленулер мен ішкімолекулалық реакциялар арасындағы айырмашылықтар және ұқсастық? Мысал келтіріңіз.

  2. Олигомердің қатаюы қандай механизммен жүреді?

  3. Вулкандау процесі дегеніміз не? Вулкандау процесіне қандай полимерлер түседі?

  4. Деструкция мен деполимерлену арасында қандай айырмашылық бар?


Дәріс 29, 30 – Полимерлердің фазалық және физикалық күйлері

Дәріс жоспары:

Дәріс жоспары:


  1. Аморфты полимерлердің молекуладан ірі құрылымы

  2. Полимерлердің фазалық және физикалық күйлер

  3. Термомеханикалық қисықтар

  4. Жоғары эластикалық күй

  5. Жоғарыэластикалық деформация релаксациялық процесс ретінде.

Макромолекулалардың мөлшері мен көлемі буындардың мөлшері мен көлемінен бірнеше есе артық, кеңістікте боліп алуға болатындай элементтерге бірігу қасиетін полимерлердің молекуладан ірі құрылымы деп атайды. Полимерлердің молекуладан ірі құрылымы олардың кристалды және аморфты фазалық күйіне қарай әр түрлі болады. Аморфты полимерлердің құрылымдық реттілігінің дәрежесі біршама жоғары. Мұндай жоғары реттілік алғашында полимерлердің пачкалы үлгінің қалыптасуына себепші болды. Әрі қарай агрегациялану ретіне қарай пачкалардан қатан аморфты не кристалды полимерлер түзіледі деп есептелді. Кейінгі кезде жаңа көзқарастар пайда болды. Соның бірі доменді үлгі. Домендер деп аталатын, мөлшері 30-100А0-дей аймақтарда тізбектер қатпарланып майысып, ретті орналасады. Домендер бір бірімен өткел тізбектермен жалғасқан. Полимерлер аморфты күйден кристалды күйге осы домендер арқылы өтеді.

Аморфты полимерлердің молекуладан ірі құрылымы жөніндегі түсінікті кластерлі үлгі береді. Кластерлер деп реттелу дәрежесі мен текшелену тығыздығы жағынан кристалиттер мен негізгі реттелмеген полимер матрицасының аралығында жататын аймақтарды айтады. Кластерлердің конформациясы қатпарлы болуы және жазылған полимер тізбегінен тұруы мүмкін.

Қатты полимерлер кристалды және аморфты (шыны тәріздес) фазалық күйде болады. Егер полимер балқымасын суытса, ол не кристалданады, не шыныланады. Кристалданғанда макромолекула бергі реттілік күйден арғы реттілік күйге ауысады. Полимердің аморфты күйден кристалды күйге, не керісінше ауысуын фазалық ауысу дейді. Фазалық ауысуды бірінші текті не екінші текті деп бөледі. Балқу мен кристалдану бірінші текті фазалық ауысуға жатады. Екінші текті фазалық ауысу ішкі энергияның, көлемінің, энтропияның үздіксіз біркелкі өзгеруі арқылы жүреді. Кристалды полимерлер тек қана қатты күйде болады. Ал аморфты полимерлер температураға байланысты үш физикалық күйде – шыны тәріздес, жоғары эластикалық және тұтқыраққыш болады.

Фазалық ауысуды бақылауға қолайлы әдістердің бірі – термомеханикалық әдіс. Термомеханикалық әдіс полимердің белгілі бір уақыт ішінде тұрақты күштің әсерінен берілген температураға байланысты деформациялануын зерттейді. Аморфты полимерлердің термомеханикалық қисығы үш физикалық күйіне сәйкес үш бөліктен тұрады (1 сурет).



1 сурет. Аморфты полимердің термомеханикалық қисығы: І – шыны тәріздес күй аймағы; ІІ – жоғары эластикалық күй аймағы; ІІІ – тұтқыраққыш күй аймағы

Шыны тәріздес күйде (I бөлік) макромолекуланың атомдары мен атомдар топтары тербелмелі қозғалыста болады. Полимер қатты аморфты күйде қалады. Бұл кезде аздаған қайтымды деформация байқалады.

Жоғары эластикалық күй (ІІ бөлік) иілгіш тізбекті макромолекулалардан тұратын полимерлерге ғана тән ерекше қасиет. Жоғары эластикалық күй едәуір қайтымды деформациямен сипатталады. Бұл кезде макромолекулалық шумақтардың пішіні өзгеретін болатындықтан мұндай деформацияны жоғары эластикалық деформация деп атайды.

Тұтқыраққыш күйде (III бөлім) жеке бөліктер, сегменттер және макромолекула түгелімен интенсивті жылулық қозғалыста болады. Соның салдарынан макромолекулалар бір біріне қатысты жылжып, қайтымсыз деформацияланады, яғни ағады.

Белгілі бір молекулалық массаға дейін полимерде жоғары эластикалық күй байқалмайды (2 сурет). Төмен молекулалық гомологтар тек қана шыны тәріздес және тұтқыр аққыш күйде болады (яғни Тш мен Та бірдей болады).






2 сурет. Сызықты полимергомологтар қатарының термомеханикалық қисықтары (M12345)
Берілген полимер үшін оның ММ неғұрлым көп болса, жоғары эластикалықтың температуралық аймағын көрсететін Та – Тш аралығы соғұрлым үлкен болады.

Жоғары эластикалық күй тек қана полимерлерге тән қасиет және белгілі бір жағдайларда ғана байқалады. ЖЭКдің температуралық интервалы Тш-Та. ЖЭКгі полимерлер үшін макромолекула сегменттерінің бергі реттілігі сақталады, бірақ олардың қозғалғыштығы шыны тәріздес күймен салыстырғанда, жоғары; релаксация уақыты 5-6 оңдық ретке төмендейді. ЖЭ деформация кезінде макромолекулалар сан алуан конформациялық өзгерістерге ұшырайды. Тізбектің термодинамикалық ықтималдығы (W(r)) не тізбектегі мүмкін болатын конформация саны Гаусстың таралу функциясымен сипатталады:



(1)

Мұндағы r – макромолекула ұштарының ара қашықтығы, b мен А макромолекуланы сипаттайтын параметрлер арқылы өрнектеледі:



 (2)

Мұндағы N – тізбектегі буындар саны, l-буынның ұзындығы.

Жүйенің энтропиясы Больцман формуласы бойынша есептеледі

(3)

(1) теңдеуін (3) қойып, макромолекула энтропиясы үшін теңдеуді аламыз:



 (4)

Мұндағы k – Больцман тұрақтысы.

Полимерлердің ЖЭ деформация кристалдық полимерлердің серпімді деформациямен салыстырғанда уақыт аралығында дамыйды. ЖЭ деформацияның аздаған жылдамдығы макромолекула сегменттерінің жылжу қажеттілігімен байланысты. Берілген кедергінің әрбір шамасына сәйкес конформациялары бар полимердің тепе теңдік құрылымы келеді. Жүйенің сыртқы күштің әсерінен тепе теңдіксіз күйден термодинамикалық тепе теңдікке өту процесін, яғни тепе теңдігі уақытқа байланысты орнайтын процесті релаксациялану процесі дейді. ЖЭ деформация нәтижесінде үлгінің құрылымдық қайта топтасуы жүретіндігінен релаксациялану процесі болып табылады. Релаксациялану процесіне кететін уақыт релаксациялану процесі τ деп аталады. Барлық релаксациялық процестердің жиынтығы релаксациялық спектр деп аталады. Барлық құрылымдық бірліктердің релаксациялану уақыттардың орташа мәнін орташа релаксациялық уақыт τ дейді. Осылайша деформацияның дамуына берілген кернеу әсер етеді. Бұл қағида температура – уақыт суперпозициясы принципінің негізін құрайды. Үлгіге үдемелі өсіп тұратын кернеу беріп, дәл сондай жылдамдықпен кернеуді қайтадан кейін түсірсе, полимерлердегі бір мезгілде жүретін кернеу мен деформация өзгерістерін σ = f(ε) бақылауға болады.

Дәріс материалдарын игергеннен кейін білуге қажетті негізгі түсініктер: полимердің молекула ірі құрылымы, аморфты полимерлердің молекула ірі құрылымы, полимерлердің фазалық күйі, полимерлердің физикалық күйі: шыны тәріздес, жоғарыэластикалық, тұтқыраққыш, полимерлер релаксациясы, гистерезис

Өзін өзі бақылауға арналған сұрақтар:


  1. Аморфты және кристалдық полимерлер қандай фазалық және физикалық күйде болады?

  2. Макромолекулалардың химиялық құрылысы, молекулалық массасы және олардың конфигурациясы термомеханикалық қисықтың түріне әсер етеді ме?

  3. Жоғары эластикалық күйдің негізгі белгілерін атаңыз.

Ұсынылған әдебиеттер:

1. Семчиков Ю.Д. Высокомолекулярные соединения: Учебник для вузов. М.: Академия, 2010. 368 с. С. 147-148

2. Жоғары молекулалық қосылыстар химиясы. Авторлар ұжымы.Алматы: Санат. – 1995. 102-114 б

3. Киреев В.В. Высокомолекулярные соединения: Учебник для вузов. М.: Высш.школа, 1992. С.423-457

4. Шур А.М. Высокомолекулярные соединения: Уч. Пособие. 3-е изд., перераб. и доп. М.: Высшая школа, 1981. С.400-406

5. Тагер А.А. Физико-химия полимеров: М.: Химия, 1978. С.133-154



Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет