Понятие механизма и его структуры Основные виды механизмов 8



бет5/9
Дата03.01.2022
өлшемі0.62 Mb.
#450878
түріРеферат
1   2   3   4   5   6   7   8   9
Структурный анализ механизмов

Функциональная. По принципу выполнения технологического процесса механизмы делятся на механизмы: приведения в движение режущего инструмента; питания, загрузки, съёма детали; транспортирования и т.д.;

Структурно-конструктивная. Предусматривает разделение механизмов как по конструктивным особенностям, так и по структурным принципам. К этому виду относят механизмы: кривошипно-ползунный; кулисный; рычажно-зубчатый; кулачково-рычажный и т.д.;

Структурная. Проста, рациональна, тесно связана с образованием механизма, его строением, методами кинематического и силового анализа, была предложена Л.В. Ассуром в 1916 году и основана на принципе построения механизма путем наслоения (присоединения) кинематических цепей (в виде структурных групп) к начальному механизму. Согласно этой классификации, любой механизм можно получить из более простого присоединения к последнему кинематических цепей с числом степеней свободы W = 0, получивших название структурных групп, или групп Ассура. Недостаток классификации – неудобство для выбора механизма с требуемыми свойствами.

  1. Основные виды механизмов

Механизм можно рассматривать как частный случай кинематической цепи, у которой, как минимум, одно звено обращено в стойку, а движение остальных определено заданным движением входных звеньев.

Отличительными особенностями кинематической цепи, представляющей механизм, являются подвижность и определенность движения ее звеньев относительно стойки. Механизм может иметь несколько входных и одно выходное звено, в этом случае он называется суммирующим механизмом и, наоборот — одно входное и несколько выходных, тогда он называется дифференциальным механизмом. По своему назначению механизмы разделяются на передаточные и направляющие.

Передаточным называется механизм, предназначенный для воспроизведения заданной функциональной зависимости между перемещениями входного и выходного звеньев.

Направляющим называется механизм, у которого траектория определенной точки звена, образующего кинематические пары только с подвижными звеньями, совпадает с заданной кривой.

Рассмотрим основные виды механизмов, нашедших широкое применение в технике.

М еханизмы, звенья которых образуют только низшие кинематические пары, называют рычажными. Эти механизмы нашли широкое применение благодаря тому, что они долговечны, надежны и просты в эксплуатации. Основным представителем таких механизмов является шарнирный четырехзвенник (рис. 2.1), состоящий из кривошипа (1), шатуна (2), коромысла (3).

Названия механизмов обычно определяются по названиям их входного и выходного звеньев или характерного звена, входящего в их состав. В зависимости от законов движения входного и выходного звеньев этот механизм может называться кривошипно-коромысловым, двойным кривошипным, двойным коромысловым, коромыслово-кривошипным. Шарнирный четырехзвенник применяется в станкостроении, приборостроении, а также в сельскохозяйственных, пищевых, снегоуборочных и других машинах. Если заменить в шарнирном четырехзвеннике вращательную пару, например D, на поступательную, то получим широко известный кривошипно-ползунный механизм, различные виды которого представлены на рис. 2.2, а, б.

Главными составляющими кривошипно-ползунных механизмов являются: кривошип (1); шатун (2); ползун (3). Кривошипно-ползунный (ползунно-кривошипный) механизм нашел широкое применение в компрессорах, насосах, двигателях внутреннего сгорания и других машинах. Заменив в шарнирном четырехзвеннике вращательную пару С на поступательную, получим кулисный механизм (различные виды механизмов представлены на рис. 2.3, а, б, в).



Составляющие кулисного механизма: кривошип (1); камень (2); кулиса (3). Кулисный механизм на рис. 2.3, в получен из шарнирного четырехзвенника путем замены в нем вращательных пар С и D на поступательные. Кулисные механизмы нашли широкое применение в строгальных станках благодаря присущему им свойству асимметрии рабочего и холостого хода: у них длительный рабочий ход и быстрый, обеспечивающий возврат резца в исходное положение, холостой ход. Большое применение шарнирно-рычажные механизмы нашли в робототехнике.

В изображенном на рис. 2.4 устройстве механизма манипулятора 1, 2, 3, 4 — звенья; А, В, С, D —кинематические пары.

Рис. 2.4


Особенностью этих механизмов является то, что они обладают большим числом степеней свободы, а значит, имеют много приводов. Согласованная работа приводов входных звеньев обеспечивает перемещение схвата по рациональной траектории и в заданное место окружающего пространства. Широкое применение в технике получили кулачковые механизмы. При помощи кулачковых механизмов конструктивно наиболее просто можно получить практически любое движение ведомого звена по заданному закону.

В настоящее время существует большое число разновидностей кулачковых механизмов, некоторые из них представлены на рис. 2.5. Устройство кулачкового механизма: кулачок (1); плоский толкатель (2); коромысло (2); острый толкатель (2); ролик (3).

Необходимый закон движения выходного звена кулачкового механизма достигается за счет придания входному звену (кулачку) соответствующей формы. Кулачок может совершать вращательное (рис. 2.5, а, б), поступательное (рис. 2.5, в, г) или сложное движение. Выходное звено, если оно совершает поступательное движение (рис. 2.5, а, в), называют толкателем, а если качательное (рис. 2.5, г) — коромыслом. Для снижения потерь на трение в высшей кинематической паре В применяют дополнительное звено-ролик (рис. 2.5, г).

Рис.2.5


Кулачковые механизмы применяются как в рабочих машинах, так и в разного рода командоаппаратах. Очень часто в металлорежущих станках, прессах, различных приборах и измерительных устройствах применяются винтовые механизмы, простейший из которых представлен на рис. 2.6. Он состоит из винта (1), гайки (2) и кинематических пар А, В, С.

Винтовые механизмы обычно применяются там, где необходимо преобразовать вращательное движение во взаимозависимое поступательное или наоборот. Взаимозависимость движений устанавливается правильным подбором геометрических параметров винтовой пары В.

Клиновые механизмы (рис. 2.7) применяются в различного вида зажимных устройствах и приспособлениях, в которых требуется создать большое усилие на выходе при ограниченных силах, действующих на входе. Отличительной особенностью этих механизмов являются простота и надежность конструкции: 1, 2 — звенья; А, В, С — кинематические пары (см. рис. 2.7).

Механизмы, в которых передача движения между соприкасающимися телами осуществляется за счет сил трения, называются фрикционными. Простейшие трехзвенные фрикционные механизмы представлены на рис. 2.8: фрикционный механизм с параллельными осями (а); фрикционный механизм с пересекающимися осями (б); реечный фрикционный механизм (в). Основные составляющие механизмов: входной ролик 1; выходной ролик (колесо) 2; рейка 2′ (см. рис. 2.8). Вследствие того, что звенья 1 и 2 прижаты друг к другу, по линии касания между ними возникает сила трения, которая увлекает за собой ведомое звено 2.



Рис.2.8


Широкое применение фрикционные передачи получили в приборах, лентопротяжных механизмах, вариаторах (механизмах с плавной регулировкой числа оборотов). Для передачи вращательного движения по заданному закону между валами с параллельными, пересекающимися и перекрещивающимися осями применяются различного вида зубчатые механизмы. При помощи зубчатых колес можно осуществлять передачу движения как между валами с неподвижными осями, так и с осями, перемещающимися в пространстве. Зубчатые механизмы применяют для изменения частоты и направления вращения выходного звена, суммирования или разделения движений.

Рис. 2.9


На рис. 2.9 показаны основные представители зубчатых передач с неподвижными осями: цилиндрическая (а); коническая (б); торцовая (в); реечная (г), состоящие из шестерни 1, зубчатого колеса 2 и рейки 2*. Меньшее из двух зацепляющихся зубчатых колес называют шестерней, а большее — зубчатым колесом. Рейка является частным случаем зубчатого колеса, у которого радиус кривизны равен бесконечности. Если в зубчатой передаче имеются зубчатые колеса с подвижными осями, то эти передачи называют планетарными (рис. 2.10). Планетарная зубчатая передача состоит из: стойки 0, представляющей зубчатое колесо 3 с внутренним зацеплением; солнечного зубчатого колеса 1; сателлита 2; водила Н; низших кинематических пар А, D, Е; высших кинематических пар B, C.

Рис. 2.10

Планетарные зубчатые передачи позволяют передавать большие мощности и реализовать большие передаточные числа при меньшем числе зубчатых колес, чем передачи с неподвижными осями. Они также широко применяются при создании суммирующих и дифференциальных механизмов. Передача движений между перекрещивающимися осями осуществляется с помощью червячной передачи (рис. 2.11), состоящей из червяка 1 и червячного колеса 2.

Рис. 2.11

Червячная передача получается из передачи винт–гайка путем продольной разрезки гайки и ее двукратного сворачивания во взаимно перпендикулярных плоскостях. Червячная передача обладает свойством самоторможения и позволяет в одной ступени реализовывать большие передаточные отношения. К зубчатым механизмам прерывистого движения относят также механизм «мальтийского креста», или мальтийский механизм. На рис. 2.12 показан механизм четырехпазового «мальтийского креста». Механизм «мальтийского креста» преобразует непрерывное вращение ведущего звена — кривошипа 1 с цевкой 3 в прерывистое вращение креста 2; цевка 3 без удара входит в радиальный паз креста 2 и поворачивает его на угол z 2π , где z — число пазов. Механизм имеет массивную неподвижную стойку 4.

Рис. 2.12

Для осуществления движения только в одном направлении применяют храповые механизмы. На рис. 2.13 показан храповый механизм, состоящий из коромысла 1, храпового колеса 3, стойки 4, собачек 2, 5 и пружины 6. При качаниях коромысла 1 качающаяся собачка 2 сообщает вращение храповому колесу 3 только при движении коромысла против часовой стрелки. Для удержания колеса 3 от самопроизвольного поворота по часовой стрелке при движении коромысла против хода часов служит стопорная собачка 5 с пружиной 6. Мальтийские и храповые механизмы широко применяются в станках и приборах. Если необходимо передать на относительно большое расстояние механическую энергию из одной точки пространства в другую, то применяют механизмы с гибкими звеньями. В качестве гибких звеньев, передающих движение от одного звена механизма к другому, используются ремни, канаты, цепи, нити, ленты, шарики и т.п.

Рис. 2.14
На рис. 2.14 приведена структурная схема простейшего механизма с гибким звеном, состоящего из малого шкива 1, гибкого элемента 2 и большого шкива 3.

Передачи с гибкими звеньями широко применяются в машиностроении, приборостроении и других отраслях промышленности.

Выше были рассмотрены наиболее типичные простейшие механизмы. Большое количество механизмов приводится в специальной литературе, патентах и справочниках.


    1. Классификация кинематических пар

 

Кинематические пары (КП) классифицируются по следующим признакам:





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет