Рис. 67. Электрический дверной замок с защитой от заедания кнопок, срабатывающий при повторном нажатии одной из них
Открывание электрического дверного замка из внутренних жилых помещений осуществляется с помощью схемы, представленной на рис. 66. При нажатии на любую из параллельно соединенных кнопок его электромагнитная катушка оказывается под напряжением. Недостаток здесь только один: при заедании любой из кнопок катушка возбуждения будет постоянно находиться под напряжением. Об этом сигнализирует зуммер электромагнита, так как он питается от источника переменного тока. Если дверь установлена на пружинах, то при нажатии какой-либо кнопки она открывается, потому что замок срабатывает. При случайном нажатии это оказывается неудобным или нежелательным. На рис. 67 показана схема, у которой имеется специальная защита от заедания кнопок, при помощи которой на катушку электромагнита дверного замка непродолжительное время подается напряжение возбуждения (импульс) только при повторном нажатии на одну из параллельно соединенных кнопок.
Схема работает следующим образом. При нажатии на кнопку G1, G2 или Gn, т.е. при подаче напряжения — 16 В, на диоде Z1 появляется — 6 В. До этого напряжения конденсатор С1 заряжается через диод D2 и резисторы R4 (ограничивает ток базы), R5 и входное сопротивлеие базы — эмиттера транзистора 77. На базу транзистора через конденсатор приложено отпирающее напряжение до тех пор, пока он не зарядится до — 6 В. Одновременно через диод D5 и резистор R8 заряжается конденсатор СЗ. Постоянная времени его заряда должна быть выбрана намного больше, чем у элементов, связанных с базой транзистора. После нажатия кнопки на базу Т1 поступает отпирающее напряжение в течение пример-но T=R4*C1 = 40 мс, но реле J1 не может сработать, так как увеличивающееся на конденсаторе СЗ напряжение за такое короткое время в состоянии достигнуть значения, необходимого для его срабатывания, поскольку его постоянная времени T2=R8*C3 = 200 мс. На реле Л через 200 мс поступает напряжение, необходимое для его срабатывания, но на транзисторе Т1 по прошествии 40 мс уже нет отпирающего напряжения, потому что конденсатор С1 зарядился. Тогда транзистор 77 закрывается, поскольку потенциал эмиттера увеличился при помощи кремниевого диода D4 до — 0,6 В, а база заземлена через R5. Резистор R6 применяется в качестве рабочего сопротивления диода.
В тот момент, когда отпускают кнопку G1, конденсатор С1 через резистор R2 и диод D1 разряжается в течение времени T11=R2-C1 = 103*20*10-6 = 20 мс. Постоянная времени разряда конденсатора СЗ T12=R7-C3 = 103-2000-10~6 = 2 с. При повторном нажатии кнопки G1 на конденсаторе СЗ уже есть напряжение, необходимое для срабатывания реле, а поскольку конденсатор С1 в промежуток (20 мс) между двумя нажатиями кнопки разрядился, он снова в течение 40 мс подает на базу транзистора отпирающее напряжение. Таким образом, срабатывает реле, подключающее через свой контакт j12 рабочее напряжение на электрический дверной замок.
Предположим, что кнопка G1 после повторного нажатия не отпущена или, например, ее заклинило. Тогда на конденсаторе СЗ имеется напряжение, необходимое для срабатавания реле J1, но поскольку по прошествии 40 мс конденсатор С1 заряжается, транзистор закрывается, следовательно, реле отпускает. Очевидно, если кнопку G1 заклинило, то на дверной замок вообще не поступает напряжение.
Чтобы реле длительное время находилось в состоянии срабатывания, надо с момента срабатывания подавать отпирающее напряжение через его контакт j11, резистор R3, конденсатор С2, диод D3 и резистор R4 на базу транзистора Т1 в течение времени Tk=(R3+ +R4)C2; тем самым можно увеличить время выдержки реле. После отпускания реле конденсатор С2 разряжается через резистор R3 и контакт j11.
В данной схеме используют реле с сопротивлением 1250 Ом, срабатывающее при напряжении 10 В. Максимальный ток, протекающий через него и транзистор Т1,
Imax =(U1 — UD4 — UCE)/(Rj1 + R8)=(16-0,6-0,2)/(1250+100)=11,3 мA.
В схеме использован транзистор АС128, но может быть и другой с меньшим коллекторным током Icmax. Конечно, нужно следить за тем, чтобы не превысить значение максимального рабочего тока базы 1Bтах (взятого по каталогу), который ограничивается резистором R4. 1Bтах = — 6/2*10-3= — 3 мА. (При изменении сопротивления R4 меняется и постоянная времени заряда базовой цепи!)
При возвращении реле в исходное состояние возникает индуктивный импульс напряжения UL = — L di/dt.
Таким образом, на транзистор попадает сумма питающего и индуктивного напряжений, что может привести к выходу его из строя. Поэтому параллельно катушке реле включен диод D6, который под влиянием обратного индуктивного напряжения, возникающего при отпускании реле, отпирается, и таким образом поглощается энергия в диоде и самом реле.
Проблему можно решить и путем параллельного подключения к катушке возбуждения реле конденсатора относительно большой емкости и сглаживания с его помощью всплеска индуктивного напряжения; недостаток этого решения в том, что конденсатор будет задерживать срабатывание реле.
Диоды D2, D3 и D5 выполняют логические функции ИЛИ — ИЛИ, отделяя друг от друга отдельные электрические цепи.
2.1.2. ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКИМИ ЗАМКАМИ
Электронные замки аналогового действия. Многие механические замки, имеющиеся в продаже, разборные, что позволяет устанавливать в них электронное управление. Существует очень много типов замков с электронными устройствами управления. Используя, например, мост Уитстона (мостовая схема постоянного тока), можно собрать очень простую и надежную схему управления электрическим дверным замком. При открывании двери, когда резистор, играющий роль ключа, вставляют на свое место, мост уравновешивается. В процессе уравновешивания реле, находящееся в диагонали моста, отпускает и через свой контакт подает напряжение на катушку возбуждения замка.
Надежность замка повышают, подключая параллельно с реле замедляющий конденсатор, тем самым обеспечивают его работу только по прошествии определенного времени, т.е. посторонние лица замок уже не откроют.
Рис. 68. Схема соединений электронного дверного замка, срабатывающего при помощи «ключа» с одним контактом и двумя резисторами
Существенно большую надежность обеспечивает схема с двумя резисторами, представленная на рис. 68. Усилители уравновешивают напряжение в центре делителя, состоящего из резисторов R11 и R12, соответствующим напряжением двух входных делителей (R16, R1 и R2...}. «Ключ», открывающий замок, имеет контакт, осуществляющий включение питающего напряжения, и два резистора (R16 и R26). Резисторы R1 и R3 и обозначенные пунктирной линией, диоды Dl — D4 защищают схему от возможной преднамеренной поломки.
При правильной настройке напряжение в точке А в момент присоединения «ключа» равно нулю (при меньших или больших номинальных значениях сопротивления ключа оно будет положительным или отрицательным) и через диоды D5 — D8 ток не течет. Следовательно, транзисторы 77 — Т4 ток не проводят. В двух других случаях транзистор Т4 проводит ток или через транзисторы Т1 и ТЗ, или через транзистор Т2. Емкость С1 совместно с последовательными резисторами имеют постояныую времени 2 с и осуществляют задержку по времени на открывание Т4. Таким образом, без соответствующего «ключа» нужно будет испробовать 60 тыс. вариантов. На рис. 69 изображены выходные каскады, управляющие тремя реле разного тока, для приведения в действие электрических замков.
Рис. 69. Выходные каскады к схеме рис. 68
Существуют и селективные релейные схемы с фер-ритовым стержнем. Выполненный из ферритового стержня «электронный ключ» особенно часто применяется, когда по каким-либо причинам в данное помещение разрешен вход только строго ограниченному кругу лиц. Комбинация замка с «ключом» из ферритового стержня и реле позволяет получить электронный замок высокой степени надежности, который не смогут открывать посторонние лица.
Рис. 70. Электронный замок с реле и «ключом» из ферритового стержня:
а — электрическая схема; б — «ключ» из ферритового стержня
Схема на рис. 70, а представляет собой селективное реле, работающее с ферритовым стержнем, и состоит из следующих основных узлов: генератора, настроенного на работу с ферритовым стержнем (Т1), избирательной фильтрующей цепи (L2, СЗ), каскада управления реле (Т2, ТЗ, 74} и самого реле с исполнительным устройством.
Замок работает следующим образом. Ферритовый стержень 1, который теперь играет роль ключа, вставляют в дверное отверстие, где помещена, как видно на рис. 70,6, генераторная катушка 3 с выводами 5, а в конец трубы 2 встроена нажимная кнопка 4. Ее контакты подключают питающее напряжение устройства. Генератор работает с транзистором Т1. Колебательный контур генератора состоит из элементов: Cl, C2tLl (рис. 70,а).
Индуктивность меняется при помощи ферритового стержня, вставляемого в катушку LL Таким образом, частота генератора зависит только от качества и размеров ферритового стержня. При использовании стержня длиной 100 и диаметром 10 мм она принимает значения 8 и 19 кГц. Катушка Ы (495 витков) помещена в изолированную трубку с внутренним диаметром 12 мм. Толщина медной проволоки 0,15, длина катушки 14 мм.
От генератора сигнал передается в параллельный колебательный контур, состоящий из элементов L2 — СЗ, и только при резонансе проходит в каскад, построенный на транзисторах Т2, ТЗ и Т4, который приводит в действие реле j1. Реле срабатывает только в том случае, если избирательный фильтр настроен точно на 8 кГц.
Катушка L2 расположена на ферритовом сердечнике, диаметр которого 8, а длина 15 мм. Число витков катушки 240, диаметр проволоки (CuZ) 0,15 мм. В схеме может быть использовано реле, рабочее напряжение которого 6 — 8 В, а ток срабатывания 60 — 100 мА.
Сигнал, поступающий в колебательный контур и на транзистор Т2 регулируется при помощи резистора R4. Целесообразно поэтому вместо R4 использовать потенциометр на 200 кОм.
Замок открывается следующим образом. Ферритовый стержень вставляется в выполненное для него отверстие, и одновременно при помощи постоянного магнита приводится в действие реле, прикрепленное к внутренней стороне двери. В это время цепь получает питание через реле и кнопку G. Если постороннему лицу удастся возбудить генератор при помощи металлического или же, возможно, ферритового стержня, но с другими магнитными параметрами, то все равно релейный каскад не будет реагировать на другую частоту. Следовательно, реле не сработает. Надежность замка повышается еще и потому, что его устанавливают с противоположной, невидимой стороны двери. Отверстие для ферритового стержня обычно также делается незаметным.
Рис. 71. Схема соединений электрического дверного замка, открывающегося при наборе заранее установленного кода
На двери имеет смысл оставить обычный механический замок. Таким образом можно ввести взломщика в заблуждение: ложным ключом он будет открывать ложный замок.
Электронные замки с кодовым устройством. На рис. 71 изображен электрический замок, открывающийся при наборе заранее установленного кода (и одновременном срабатывании реле). На стойке входной двери смонтированы пять кнопок. В скрытом от постороннего глаза месте выключателями K1 — K5 можно установить выбранную кодовую комбинацию. При нажатии на одну из кнопок Gl — G5 реле срабатывает и блокировкой удерживается в этом состоянии. Если выключатели находятся в положении, показанном на рисунке (кодовая комбинация 1, 1, О, 1, 0), для открывания двери нужно нажать кнопки Gl, G2 и G4. Одновременно с этим постоянный магнит нужно поднести к реле, прикрепленному к внутренней стороне двери. При неправильном наборе кода можно снять (прекратив подачу питающего напряжения) блокировку, слабо нажав на сдвоенную кнопку, одновременно являющуюся и кнопкой звонка. Можно использовать также и тепловое реле, которое исключает возможность подбора кода, так как оно прерывает цепь дверного замка уже после двух-трех попыток открывания (контакт 161). Поскольку неосведомленное лицо не знает о возможности прерывания блокирующих цепей реле, оно располагает лишь одной попыткой открыть замок. При комбинации кода и реле получаем, это можно сказать с полной уверенностью, замок, который постороннее лицо открыть не сможет. Реле J1 — J5 должны быть аналогичного типа и иметь одинаковые значения сопротивлений обмоток. Подбирать их надо таким образом, чтобы они соответствовали применяемому тепловому реле и напряжению питания. На рис. 72 представлена схема соединений электрического дверного замка, открывающегося пластиной со световым кодом. Элементы цепей транзисторов и свето-диодов расположены на одной оптической оси, напротив друг друга. Вставляемая в качестве ключа пластина со световым кодом в некоторых местах преграждает путь световому лучу. На ней имеется пять зон (пятая зона всегда темная). Если пластина вставлена до упора, она преграждает путь свету и посредством транзистора Т1 обеспечивает задержку на 10 с с помощью интегральной микросхемы таймера типа 555.
Четыре зоны со световым кодом обеспечивают комбинацию из 4 бит с 16 вариантами открывания замка. Поскольку 16 — минимальное число комбинаций, ставят блокировку с помощью таймерной схемы на 9 с и применяют блок сигнализации, который начинает действовать после неудачной попытки открывания замка. Достигнутую таким образом степень защиты нельзя недооценить.
Кодовая комбинация может быть выбрана произвольно, нельзя только в качестве ключа использовать полностью темную пластину, так как в этом случае замок может быть, например, открыт и при помощи полоски темной бумаги. Еще больше повысить надежность защиты можно, включив последовательно в цепь электрического звонка реле. Замок в этом случае будет открываться с задержкой 10 с при срабатывании реле, прикрепленного к внутренней стороне двери с помощью постоянного магнита.
Рис. 72. Схема соединений электрического дверного замка, открывающегося на кодовую комбинацию на пластине со световым кодом
При вставлении «ключа» первые четыре зоны пластины дают код, который в десятичной системе счисления означает 9. Эти цифры расшифровываются в цепи де-мультиплексора 74С154. Следовательно, на выходе 9 появляется уровень 0. По истечении 30 с выход 3 таймера типа 555 тоже устанавливается в 0. Два уровня О служат в качестве инверсного входного сигнала схемы ИЛИ, управляющей транзистором Т2, и создают условия, при которых на выходе устанавливается уровень 1. Вследствие этого возбуждается обмотка электрического дверного замка.
При попытке открыть замок посторонними лицами (при неправильном подборе кода) работает цепь задержки и на выходе 9 демультиплексора установлен уровень I, на выходе схемы ИЛИ, управляющей электрическим дверным замком, по-прежнему 0, а на выходе аналогичной схемы, но управляющей блоком сигнализации, появляется 1. В результате этот блок включает сигнализацию.
На рис. 73 приведена схема электронного кодового дверного замка одной из последних конструкций. Для того чтобы его открыть, надо установить четырехзначный цифровой код на расположенных по кругу контактных переключателей К1, К2, КЗ и К4 и нажать кнопку G1. После этого все четыре декадных переключателя нужно вернуть в нулевое положение и повторно нажать кнопку. Замок через некоторое время откроется. Этот метод обеспечивает условия, при которых после открывания замка можно не оставлять важного начального кода на переключателях. Во время работы схемы при правильной установке кодов диоды D1 — D6 пропускают ток. Открывая дверь, нужно установить первый код (в нашем случае 5058). Тогда диоды D2. D4 и D6 проводят ток в направлении кнопки G1. Вторым кодом в данном случае будет 0000, и диоды Dl, D2 и D5 будут пропускать ток от кнопки G1 к цепи второго кода.
Первый и второй коды могут устанавливаться произвольно путем подключения черного или красного проводника к соответствующему контакту. Черные провода служат для произвольной установки первого кода, красные — второго. Связь со стороны кодового числа отсутствует, за исключением тех случаев, когда числа самого маленького разряда одинаковы (таких стиуаций быть не должно).
Питание схемы осуществляется от нестабилизированного блока питания ±15 В (рис. 74). Ток течет от световодов к цепям микросхем K1, K2 (рис. 73), а через них — к остальным элементам электронной схемы. Применение оптических изоляторов целесообразно, так как позволяет сократить расстояние между блоком установочных переключателей с расположенными по кругу контактами и электроникой управления. Интегральная микросхема IC1, следовательно, получает напряжение питания при соответствующем первом коде, 1L2 — при втором. Светодиоды LED1 и LED2 служат для контроля работы табло. Светодиод LED1 загорается при правильной установке первого кода LED2 — второго.
Рис. 73. Схема соединений электронного кодового дверного замка:
1 — цепь кодирования; 2 — блок установочных переключений с расположенными по кругу контактами; 3 — заземление корпуса; 4 — цепь первого кода; 5 — цепь второго кода; 6 — электронная схема управления
Рис. 74. Нестабилизированный блок питания электронного комбинационного дверного замка
Интегральная микросхема 1С4 представляет собой сдвоенный таймер типа 556, одна половина которого (а) соединена как моностабильный мультивибратор с постоянной времени 30 с, а другая (б) -с постоянной времени, равной 10 с.
Рис. 75. Электронный кодовый замок:
а — схема соединений; б — набор кода при помощи кругового переключателя и кнопки gq
При правильном первом коде начинает работать микросхема IC4 (а) совместно с элементами R3 С1 и Р4. Выход IC4 (а) подключен к стирающему входу 1C4 (б) (соединены контакты 5 и 10). Следовательно, IС4 (6) при нормальных условиях бездействует но пуск ее возможен. Правильность второго кода контролирует IC4 (6), реле J срабатывает и своим контактом j возбуждает обмотку открывания двери. Примерно через 30 с истекает время работы 1С4(а) и сигнал стирания снова попадает на 1С4(б). Поэтому в течение 30 с после установки первого кода надо его стереть и открыть дверь или же начать все сначала
Стабилизированное напряжение 12 В, необходимое для работы интегральной микросхемы типа 556, обеспечивается стабилизатором напряжения типа мA7812 (IC3),
На рис. 75 приведена круговая схема электронного дверного замка с четырехзначным цифровым кодом Ввод цифровой кодовой комбинации осуществляется путем нажатия в соответствующем порядке клавиш карманного калькулятора. Если его нет, можно использовать переключатель с расположенными по кругу контактами (для каждой цифры — свой порядок) и параллельно с ним соединенную кнопку G6 (рис. 75,6).
При нажатии каждой отдельной цифры в цепи включается тиристор. Пусковой импульс задает конденсатор С1, который в обычном состоянии через резистор R1 заряжен до +9 В. Конденсаторы СЗ. С4 и С5 сначала тоже бывают заряженными до +9 В. Благодаря этому всякая попытка включения тиристоров Ti3, Ti4 и Ti5 в точках С, D и Е будет безуспешной. При нажатии на клавишу цифры первой комбинации (в точке В) тиристор Ti2 включается и его анодный потенциал уменьшается примерно до 0,7В. Теперь конденсатор СЗ быстро разряжается и при помощи импульса, поданного на точку С, тиристор 773 готовится к включению. Конденсатор С4 разряжается, после чего тиристор Ti4 тоже становится управляемым. Нажатие в определенном порядке цифровых клавиш подготавливает следующий тиристор к возможности включения.
Часть схемы, обозначенная пунктирной линией, препятствует расшифровке комбинации. При нажатии неправильной цифры включается тиристор Til и после непродолжительной паузы, устанавливаемой элементами R17 и C6t вводит в режим насыщения транзистор 77. Тем самым утрачивается возможность дальнейшего подбора цифр, потому что конденсатор CJ разряжен. Ввод нового кода возможен только после выключения и последующего включения выключателя K.
В устройстве применены тиристоры типа 2N5060. Максимально допустимый удерживающий ток 5 мА. При помощи анодных резисторов 10 Ом образуется удерживающий ток, равный 0,1 мА. Между управляющими электродами и катодами помещают демпферные резисторы на 100 кОм.
Резистор R13, который препятствует разряду конденсаторов СЗ, С4 и С5 (они находятся в полностью заряженном состоянии), не позволяет зажечь тиристоры Ti3, Ti4 или Ti5 при включении выключателя K. Резистор R14 обеспечивает возможность включения тиристора Ti5 даже при очень сильной индуктивной нагрузке. В схеме применяют реле, срабатывающие при напряжение 6 — 7 В и обладающие довольно большим сопротивлением.
2.1.3. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ ДВЕРЬМИ
Рис. 76. Принцип действия схемы автоматического управления дверьми с применением фотодатчиков:
1 — электрический дверной замок; 2 — дверь; 3 — управление открыванием; 4 — автоматическое закрывание; 5 — автоматическое открываиие; 6 — датчики
Достарыңызбен бөлісу: |