Рис. 46. Схема сигнальной системы, чувствительной к изменению емкости
На рис. 46 дана схема сигнальной системы, чувствительной к изменению емкости. Транзисторы 77 и Т2 образуют одинаковые каскады гетеродинных генераторов. Индуктивность обмоток колебательного контура транзисторов 77 и Т2 25 мГн (L1 и L3). Частота генераторов будет 95 кГц. Настроечная емкость колебательных контуров относительно невелика потому, что небольшое параллельное изменение емкости датчика вызывает уже достаточно большое изменение частоты. Если Ср равна 10 пФ, частота гетеродинного каскада транзистора 77 изменится на 4,2 кГц.
В качестве обмоток колебательного контура можно использовать, например, обмотки строчного генератора телевизионных приемников. Они имеют индуктивность 30 мГи, число витков 2000. Соединительные обмотки L2 и L4 имеют по 100 витков. Датчик присоединяют к индуктивности L1. Вызываемое им нарушение настройки выравнивается регулировкой сердечника обмотки L1. При приближении к датчику в результате нарушения настройки генератора 77 изменяется возникающее на диоде D1 разностное напряжение звуковой частоты. Вследствие малого количества витков в обмотках L2 и L4 девиации частоты между двумя генераторами не возникает. Элементы R7, С8 образуют фильтр верхних частот.
В обычном состоянии, т. е. когда около датчика никого нет, разность частот двух генераторов составляет более 1 кГц. Эту относительно большую разностную частоту фильтр верхних частот не пропускает, так что выходное напряжение очень невелико. Если же емкостный датчик нарушает настройку генератора Т1, разница частот уменьшается, а выходной сигнал возрастает.
Работа устройства может быть построена и на другом (противоположном) принципе. В обычном состоянии тогда настройка частот дает, например, разницу в 100 — 200 Гц; получаем большой выходной сигнал. При работе емкостного датчика частотная разность увеличивается и выходной сигнал уменьшается, а UВЫх управляет релейным пусковым каскадом.
Стабилитрон Z стабилизирует питающее напряжение генераторов, построенных на транзисторах 77 и Т2.
На рис. 47 приведена схема переносной сигнальной системы, применяемой для охраны входной двери. Устройство работает от двух малогабаритных аккумуляторов, заряда которых хватает на 10 дней работы (без подзарядки), и приводится в действие в момент, когда кто-то касается дверной защелки или же пытается открыть дверь ключом. Сигнализация срабатывает, даже если взломщик в кожаных или резиновых перчатках, и звучит до тех пор, пока не отключат переключатель К1.
Вмонтированное в пластмассовую мыльницу сигнальное устройство надо подвесить с внутренней стороны двери к основанию защелки.
Достоинствами прибора являются: портативность; транспортабельность; независимость питания от сети переменного тока; малые размеры; простота устройства; относительно небольшие затраты на установку.
Сигнальная цепь состоит из генератора, который включает в себя элементы: Т1, LI, R1 и С2. Выходной сигнал его вторичной обмотки детектируется диодом D1. Положительный сигнал, попадающий на базу транзистора Т2 с диода D1, удерживает транзистор в открытом состоянии, так что его коллекторно-эмиттерное напряжение почти равно нулю. Тиристор при этом закрыт.
Рис. 47. Схема переносной сигнальной системы, применяемой для охраны входной двери
Чувствительная точка А генератора имеет высокочастотный импеданс, который может легко изменяться, если вблизи подвесного крюка окажется любой крупный предмет, поглощающий высокие частоты. Сигналы тревоги, таким образом, вызываются приближением или касанием человеческой руки. Чувствительность прибора устанавливается на нужный уровень при помощи потенциометра Р, параллельно соединенного с обмоткой обратной связи. Подвесной крюк — короткая металлическая петля, имеющая большой импеданс. Если через нее нагружать высокочастотный генератор, то генерация срывается, а в результате прекращается подача положительного открывающего напряжения на базу транзистора Т2. Он закрывается, а тиристор открывается. На сигнальный зуммер в это время подается питающее напряжение через тиристор и кнопку K1. Поскольку тиристор подключен к источнику постоянного тока, он до тех пор остается в открытом состоянии, пока не нажмут кнопку K1, чтобы на мгновенье прервать цепь и таким образом закрыть тиристор.
Схема собирается на небольшой пластине с отверстиями или печаткой плате. При монтаже надо следить за тем, чтобы длина проводов была минимальной. В качестве L1 можно использовать обмотку транзисторного радиоприемника.
В маленький пластмассовый корпус должны быть встроены печатная плата, зуммер, кнопка К1, выключатель К и два аккумуляторных элемента по 1,5 В каждый. Крючок изготавливают из крепкой медной прово-
локи, которую, просунув в отверстие на боковой поверхности корпуса, припаивают к точке «Л».
Следует заметить, что устройство надежно работает только при металлических дверных защелках, устанавливаемых на деревянных дверях. Металлические двери слишком «перегружают» генератор, поэтому применяться не могут. В качестве транзистора Т2 может быть использован любой маломощный германиевый транзистор n-р-n-типа.
1.2.6. СИГНАЛЬНО-ПРЕДУПРЕДИТЕЛЬНЫЕ УСТРОЙСТВА
Самыми распространенными из них являются: акустические (звонки со световой сигнализацией, электромеханические и электронные сирены, трещотки, многотональные рожки и трубы, сигнальные выстрелы, взрывы петард); оптические (лампы, мигалки, вращающиеся световые сигнализаторы, прожекторы, лампы-вспышки, световые надписи, взывающие о помощи или же означающие тревогу, дымовые устройства и др.); беззвучные (системы, вмонтированные в телефонную или радиосеть), представляющие собой комбинацию оптических и акустических сигнально - предупредительных систем.
При выборе и проектировании сигнально-предупреди-тельных устройств нужно учитывать следующие акустические характеристики: самый эффективный частотный диапазон звуковых сигналов от 2 до 4 кГц; поскольку на частоте 4 кГц распространены слышимые помехи, целесообразнее использовать диапазон от 2 до 3 кГц; изменяющийся звук обнаруживается легче, чем равномерный, непрерывный.
Акустические сагнально-предупредительные устройства. На рис. 48 приведена схема прерывисто звучащего электронного сигнала. Прямоугольные сигналы самовозбуждающегося мультивибратора (транзисторы Т1 и Т2) поступают на транзисторы ТЗ и Т4. Потребляемая мощность составляет 40 Вт при напряжении питания 6 В. В схеме диод D защищает транзистор Т4 от индукционных всплесков напряжения.
Рис. 48. Схема прерывисто звучащего электронного сигнала с самовозбуждающимся мультивибратором
Рис. 49. Схема сигналъно-предупреднтелъного устройства с характерным звучанием сирены
На рис. 49 показано сигнально-предупредительное устройство с характерным звучанием сирены. Схема построена на двух интегральных схемах таймеров типа 555, которые работают как самовозбуждающиеся мультивибраторы. Один из них вырабатывает сигналы частотой 1, другой — 270 Гц. Первый питается напряжением от транзистора Т1, который открывается сигналом управляющего транзистора Т2. Второй в это время начинает работать, и прямоугольные импульсы на его выходе через оконечный каскад включают источник звуковых аварийных сигналов.
Постоянно действующий самовозбуждающийся мультивибратор частотой 1 Гц посредством оптопары на 0,5с накоротко замыкает часть резистора обратной связи другого мультивибратора с частотой 270 Гц, в результате чего звуковая частота увеличивается до 480 Гц. Так формируется характерный звук сирены.
На рис. 50 представлена схема программируемой электронной сирены. Сила звука регулируется при помощи потенциометра РЗ. Интегральная микросхема IC2 работает в качестве самовозбуждающегося мультивибратора. Его частоту определяют элементы (P2-{-R5)C3. Частота настройки находится в диапазоне от 250 до 1500 Гц и регулируется потенциометром Р2. Формула f = 1/[0,36(P2+R5)C3] позволяет установить пределы настраиваемой частоты. Время периода устанавливается потенциометром PL Печатная плата и монтажная схема даны на рис. 51.
На рис. 52 изображена электронная сирена с выходной мощностью около 1,5 кВт, построенная на одной интегральной микросхеме КМОП-типа (CD4011) и трех транзисторах. Устройство состоит из низкочастотного модулирующего генератора и генератора с частотой колебаний 800 — 1000 Гц. Каждый из них имеет по два входа, а также элементы R5, С2 и R2, С4, СЗ, определяющие частоту колебаний. Глубина модуляции устанавливается потенциометром Р. Выходной сигнал появляется на выводе 4. Для подачи питающего напряжения служат выводы 7 и 14. Звукоизлучатель приводится в действие усилителем звуковой частоты, состоящим из транзисторов Т1, Т2, ТЗ.
Достарыңызбен бөлісу: |