Прочность конструкций


Определение нагрузок на крыло



бет5/10
Дата29.07.2022
өлшемі0.56 Mb.
#459838
түріПояснительная записка
1   2   3   4   5   6   7   8   9   10
Проектировочный расчет крыла самолёта на прочность «Су-26»

2. Определение нагрузок на крыло


Приведенный метод расчета применим для двухлонжеронных стреловидных и трапециевидной формы в плане крыльев, но все нагрузки рассчитываем для настоящего крыла Су-26.


При определении величины подъемной силы Y и распределения её по размаху крыла в виде аэродинамической нагрузки в расчет вводится полная площадь крыла, включая подфюзеляжную часть.


Таблица 5 – Геометрические характеристики профиля NACA – 009



,

-

х, м

ув , м

- ун, м

0

0

0

0

0

0

2,5

1,96

-1,96

46,3

36,3

-36,3

5,0

2,67

-2,67

92,6

49,5

-49,5

7,5

3,15

-3,15

139,0

58,4

-58,4

10

3,51

-3,51

185,3

65,0

-65,0

15

4,01

-4,01

278,0

74,3

-74,3

20

4,30

-4,30

370,6

79,7

-79,7

30

4,50

-4,50

556,0

83,4

-83,4

40

4,35

-4,35

741,2

80,6

-80,6

50

3,97

-3,97

926,5

73,6

-73,6

60

3,42

-3,42

1111,8

63,4

-63,4

70

2,75

-2,75

1297,1

51,0

-51,0

80

1,97

-1,97

1482,4

36,5

-36,5

90

1,09

-1,09

1667,7

20,2

-20,2

95

0,60

-0,60

1760,4

11,1

-11,1

100

0

0

1853,0

0

0

Все случаи нагружения крыла в полете отражены в Нормах прочности (Авиационные правила) и сведены к шести случаям: случаи А, А', В, С, Д, Д'.


Случаи А, А' характерны наибольшими изгибающими моментами и максимальными перегрузками (выход из пикирования, полет с набором высоты).
Случаи В, С отличаются большими крутящими моментами (отвесное пикирование, полет с резким отклонением элеронов).
Случаи Д, Д' характерны отрицательными перегрузками (вход в пикирования в нижней точке).
Вся нагрузка, действующая на крыло (воздушная, сосредоточенная и массовая), преобразуется к перерезывающей (поперечной) силе Qy, изгибающим Мх , крутящим Мкр моментам и осевой силе N.
В курсовом проекте необходимо определить воздушные и инерционные нагрузки, изгибающие Мх и крутящие моменты Мкр и перерезывающую силу Qy, действующие в каждом сечении крыла (рисунок 3).














q







Рисунок 3 - Расчетная схема нагружения крыла

Перерезывающие силы и изгибающие моменты вызывают изгиб крыла, совокупность касательных сил – его кручение.


Под действием изгибающего момента возникают осевые усилия в поясах лонжеронов (верхние пояса сжаты, нижние растянуты), стрингерах и частично в обшивках .
Перерезывающая сила воспринимается стенками лонжеронов и обшивкой, в них возникают сдвиговые стенки и касательные усилия q.
Нервюры крыла, выполненные в виде плоских балок, необходимы для сохранения профиля крыла, создания жесткости крыла и передачи нагрузок на другие элементы крыла.
Обшивка воспринимает кручение, некоторую часть осевых усилий и служит для придания обтекаемой формы крыла.
В курсовом проекте необходимо определить воздушные нагрузки для случаев А и В.
Значение выбираем в зависимости от веса самолёта и скоростного напора по таблице 5[1], отсюда = 912,64 кг/м2.
В случае А:


; ; ; (2)

Значение принимаем су = 0,55 , тогда:




.
В случае В:


; ; ; (3)

Значение принимаем су = 0,55


.
Расчет нагрузок сводим в таблицу 6.
То результатом расчета воздушных нагрузок строим эпюру распределения погонных воздушных нагрузок по размаху крыла.
Применяя метод интегрирования (таблица 7), получаем значения поперечной силы и изгибающего момента , строим эпюры силовых факторов и по размаху крыла.


(4) (6)


(5) (7)

С эпюр и снимаем величины поперечной силы и изгибающего момента в рассматриваемом сечении крыла.


Подбор сечения элементов крыла производим из условий работы крыла на изгиб и кручение.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет