2. Основные понятия теории оптимизации
2.1. Общая постановка задачи оптимизации
В общей задаче требуется найти вектор
из допустимой области , который обращает в минимум целевую функцию q(x), т.е. такой
, для которого
(1)
Если существует, то он определяет слабый, глобальный (абсолютный) минимум q*(x) в допустимой . Слабый, т.к. удовлетворяет нестрогому неравенству. Глобальный, т.к. неравенство справедливо для любых x из области X. Минимум при сильный, если
для . Если поменять знаки неравенств – получим сильный и слабый максимумы. Минимум в точке называется локальным (относительным), если найдётся такая окрестность O(x*) точки , что для всех
имеет место . Если дифференцируема, то задача отыскания локальных минимумов сводится к нахождению стационарных точек, в которых обращаются в ноль частные производные q(x):
(2)
(2) – необходимое, но не достаточное условие. Достаточным условием существования в стационарной точке относительного минимума является положительная определённость квадратичной формы.
2.2. Ограничения на допустимое множество
Теорема Вейерштрасса: непрерывная функция, определённая на непустом замкнутом ограниченном множестве, достигает минимума (максимума) по крайней мере в одной из точек этого множества.
2.3. Классическая задача оптимизации
Состоит в нахождении минимума целевой функции , где – точка в пространстве при начальных ограничениях типа равенств
(3)
Если (3) имеют место, то минимум q(x) называется условным минимумом. Если ограничения (3) отсутствуют, то говорят о безусловном минимуме.
Классический способ решения данной задачи состоит в том, что (3) используют для исключения из рассмотрения переменных. При этом целевая функция приводится к виду
(4)
,где через обозначены неисключаемые переменные. Задача теперь состоит в нахождении значений , которые обращают в минимум q1 и на которые не наложено ограничений (задача на безусловный экстремум).
Достарыңызбен бөлісу: |