Реферат по математическим основам теории систем на тему Линейное программирование Группа: пс-263


Вычислительные процедуры симплекс-метода



бет6/6
Дата03.12.2022
өлшемі5.42 Mb.
#466374
түріРеферат
1   2   3   4   5   6
Линейное программирование

4.2.2 Вычислительные процедуры симплекс-метода
Симплекс-алгоритм:
Шаг 0: Используя линейную модель стандартной формы, определяют НДБР путём приравнивания к нулю n-m (небазисных) переменных.
Шаг 1: Из числа текущих небазисных переменных выбирается включаемая в новый базис переменная, увеличение которой обеспечивает улучшение значения целевой функции. Если её нет -- текущее базисное решение оптимально, иначе переход к Шагу 2.
Шаг 2: Из числа переменных текущего базиса выбирается исключаемая переменная, которая должна стать небазисной при введении в состав базиса новой переменной.
Шаг 3: Находится новое базисное решение, соответствующее новым составам базисных и небазисных переменных. Переход к Шагу 1.

Если x­E=xI=0, то

(соответствует точке A Ha ) – начальное допустимое решение.



















Решение





-3

-2

















2









6





2











8





-1





























2

Если в задаче максимизации все небазисные переменные в -уравнении имеют неотрицательные коэффициенты, полученное пробное решение является оптимальным. Иначе в качестве новой базисной переменной следует выбрать ту, которая имеет наибольший по абсолютной величине отрицательный коэффициент. Применяя это условие к исходной таблице – переменная, включаемая в базис.


Процедура выбора подключаемой переменной предполагает проверку условия допустимости, требующего, чтобы в качестве исключаемой переменной выбиралась та (из текущего базиса), которая первой обращается в нуль при увеличении включаемой переменной вплоть до значения, соответствующего смежной экстремальной точке.
Отношение, идентифицирующее исключаемую переменную, можно определить из симплекс-таблице. Для этого в столбце вводимой переменной вычёркиваются отрицательные и нулевые элементы ограничений. Затем вычисляются отношения постоянных из правых частей ограничений к оставшимся элементам столбца. Исключаемая переменная – та, для которой это отношение минимально.



















Решение

Отношение





-3

-2











-







2









6







2











8







-1













-

















2

-

Столбец, ассоциированный с вводимой переменной – ведущий столбец; строка, соответствующая исключаемой переменной – ведущая строка; на их пересечении – ведущий элемент.


Поиск нового базисного решения осуществляется методом исключения переменных (метод Жордана-Гаусса). Этот процесс включает в себя вычислительные процедуры двух типов.
Тип 1. Формирование ведущего уравнения
Новая ведущая строка = предыдущая ведущая строка/ведущий элемент
Тип 2. Формирование остальных уравнений
Новое уравнение = предыдущее уравнение – (коэффициент ведущего столбца предыдущего уравнения)*(новая ведущая строка)
Новая симплекс-таблица, полученная после проведения рассмотренных операций:

















Решение

Отношение



















-



































































































-



















-



















-



















-



















-

xI – вводимая переменная (т.к. коэффициент в -уравнении -1/2). Исключаемая переменная s1, (отношение 4/3 – минимальное). Снова проведём вычисления двух типов. Последняя симплекс-таблица соответствует оптимальному решению задачи, т.к. в -уравнении ни одна из небазисных переменных не фигурирует с отрицательными коэффициентами.


В случае минимизации целевой функции в этом алгоритме необходимо изменить только условие оптимальности: в качестве новой базисной переменной следует выбирать переменную, которая в -уравнении имеет наибольший положительный коэффициент. Условия допустимости в обоих случаях одинаковы.


4.2.3. Искусственное начальное решение
Для получения начального базисного решения мы использовали остаточные переменные. Однако когда исходное ограничение записано в виде равенства или имеет знак, нельзя сразу же получить НДБР. Поэтому были разработаны два метода, в которых используется «штрафование» искусственных переменных.

  1. Метод больших штрафов (М-метод)

Рассмотрим линейную модель, приведённую к стандартной форме:
минимизировать

при ограничениях

В первом и втором уравнениях нет переменных, исполняющих роль остаточных. Поэтому введём в каждое из этих уравнений по одной из искусственных переменных R1 и R2:
За использование этих переменных в составе целевой функции можно ввести штраф, приписывая им достаточно большой положительный коэфффициент . Получим линейную модель:
минимизировать

при ограничениях

Теперь если

,то начальное допустимое решение:
Метод оптимизации, направленный на нахождение минимального значения , приведёт к тому, что переменные R1 и R2 в оптимальном решении обратятся в нуль.
Необходимо переформулировать условие задачи, чтобы представить процесс решения в удобной табличной форме. Подставив в целевую функцию полученные из соответствующих ограничений выражения для искусственных переменных

получим выражение для :

Решение представлено в сводной таблице:



Итерация














Решение

Отношение


















-











































































-











































































-





































-





































-


















-


















-


















-




  1. Т.к. целевая функция минимизируется, переменные, включаемые в базис, должны иметь наибольшие положительные коэффициенты в -уравнении. Оптимум достигается, когда все небазисные переменные имеют коэффициенты в -уравнении. Оптимальному решению соответствует точка

  2. .

Т.к. в оптимальном решении отсутствуют искусственные переменные, имеющие положительное значение, то данное решение – допустимое оптимальное решение задачи в её стандартной постановке.

  1. Двухэтапный метод

Этап 1. Вводятся искусственные переменные, необходимые для получения стартовой точки. Записывается новая целевая функция, предусматривающая минимизацию суммы искусственных переменных при исходных ограничениях, видоизменённых за счёт искусственных переменных. Если минимальное значение новой целевой функции равно нулю (т.е. все искусственные переменные в оптимуме равны нулю), то исходная задача имеет допустимое решение и переходим к Этапу 2.
Этап 2. Оптимальное базисное решение, полученное на Этапе 1, используется в качестве начального условия исходной задачи.
Рассмотрим на примере.
Этап 1.
Минимизация

при ограничениях

















Решение

































































































































































































Т.к. , можно переходить к Этапу 2.


Этап 2. Исходную задачу сформулируем следующим образом:
минимизировать

при ограничениях

Теперь, приравняв x3=0, получим НДБР

Для решения задачи необходимо подставить в целевую функцию выражения для базисных переменных x1 и x2:



5. Двойственность.

Двойственная задача – вспомогательная задача ЛП, формулируемая с помощью определённых правил непосредственно из исходной, или прямой задачи.


Прямая задача ЛП в стандартной форме:
максимизировать (минимизировать)

при ограничениях

В состав включаются избыточные и остаточные переменные.





























































































Для формулировки двойственной задачи расположим коэффициенты прямой задачи согласно схеме:



  • каждому ограничению прямой задачи соответствует переменная двойственной задачи;

  • каждому переменной прямой задачи соответствует ограничение двойственной задачи;

  • коэффициенты при некоторой переменной, фигурирующие в ограничения прямой задачи, становятся коэффициентами левой части соответствующего ограничения двойственной задачи, а коэффициент, фигурирующий при той же переменной в выражении для целевой функции прямой задачи, становится постоянной правой части этого же ограничения двойственной задачи.

Информация о других условиях двойственной задачи (направление оптимизации, ограничения и знаки двойственных переменных) представлена в таблице:



Прямая задача в стандартной форме.

Двойственная задача

Целевая функция

Целевая функция

Ограничения

Переменные

Максимизация

Минимизация



Не ограничены в знаке

Минимизация

Максимизация



Не ограничены в знаке

Рассмотрим пример:


Прямая задача:
максимизировать

при ограничениях

Прямая задача в стандартной форме:
максимизировать

при ограничениях

Двойственная задача:
минимизировать

при ограничениях:

(означает, что y1>0). y1, y2 не ограничены в знаке.

Достарыңызбен бөлісу:
1   2   3   4   5   6




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет