Статистически установлена связь между уровнем солнечной и геомагнитной возмущенности и ходом ряда процессов в биосфере Земли (динамикой популяций животных, эпидемий, эпизоотий, количеством сердечно-сосудистых кризов и др.). Наиболее вероятной причиной такой связи являются низкочастотные колебания эл.-магн. поля Земли. Это подтверждается лабораторными экспериментами по изучению действия эл.-магн. полей естественой напряженности и частоты на млекопитающих.
Хотя не все звенья цепочки С.-з.с. (рис. 3) одинаково изучены, в общих чертах картина С.-з.с. представляется качественно ясной. Количеств. исследование этой сложной проблемы с плохо известными (или вообще неизвестными) начальными и граничными условиями затруднено из-за незнания конкретных физ. механизмов, обеспечивающих передачу энергии между отдельными звеньями.
45. Солнечная корона — внешние слои атмосферы
Солнца, которые начинаются над
хромосферой. Границы короны Солнца до сих пор не установлены, на сегодняшний день ясно, что она продолжается, по крайней мере, до границ Солнечной системы.
Земля, так же как и другие планеты, находятся внутри короны. При наблюдениях из космоса корона прослеживается на десятки градусов от Солнца и сливается с явлением
зодиакального света.Интегральный блеск короны составляет от 0,8×10-6 до 1,3×10-6 часть блеска Солнца. Поэтому она не видна вне
затмений или без технологических ухищрений. Для наблюдения Солнечной короны вне затмений используют
внезатменный коронограф.
Спектр солнечной короны состоит из трех различных составляющий, названных L, K и F компонентами. K-составляющая — непрерывный спектр короны. На его фоне до высоты 9'÷10' от видимого края Солнца видна эмиссионная L-компонента. Начиная с высоты около 3' и выше виден фраунгоферов спектр, такой же как и спектр
фотосферы. Он составляет F-компоненту солнечной короны. На высоте 20' F-компонента доминирует в спектре короны. Высота 9'÷10' принимается за границу, отделяющую внутреннюю корону от внешней.При длительных наблюдениях с внезатменным коронографом
L-короны было установлено, что переменность изофот происходит примерно за четыре недели, что указывает на то, что корона в целом вращается так же как и всё Солнце.K-составляющая короны появляется при
томсоновском расеянии солнечного излучения на свободных электронах. В непрерывном спектре были обнаружены чрезвычайно сильно размытые (до 100Å) линии H и K Ca II, что указывает на чрезвычайно большую тепловую скорость излучающих частиц (до 7500 км/с). Электроны приобретают такие скорости при температуре порядка 1,5 млн. К. В пользу того, что K-спектр принадлежит электронам, свидетельствует тот факт, что излучение внутренней короны сильно поляризовано, что и предсказывается теорией для томсоновского рассеяния.Механизм нагрева короны, по видимому, тот же, что и для хромосферы. Поднимающиеся из глубины Солнца конвективные ячейки, проявляющиеся в фотосфере в виде грануляции, приводят к локальному нарушению равновесия в газе, которое приводит к распространению акустических волн, движущихся в различных направлениях. При этом хаотическое изменение плотности, температуры и скорости вещества, в котором распространяются эти волны, приводит к тому, что меняется скорость, частота и
амплитуда акустических волн, причем изменения могут быть столь высокими, что движение газа становится сверхзвуковым. Возникают
ударные волны,
диссипация которых и приводит к нагреву газа.Наблюдение эмиссионных линий L-короны также подтверждает предположение о высокой температуре в ней. Этот спектр долго оставался загадкой для астрономов, поскольку имеющиеся в нем сильные линии не воспроизводились в лабораторных опытах ни с одним из известных веществ. Долгое время этот эмиссионный спектр приписывался веществу
коронию, а сами линии и по сей день называют корональными,Причем, все эти линии являются
запрещенными и для их излучения необходимы экстремально низкие плотности вещества, недостижимые в земных лабораториях. Для излучения большинства линий необходима температура около 2,5 млн град. Особого внимания требует линия 5694,42Å Ca XV требующая температуры 6,3 млн градусов. Линия эта сильно переменная и вероятно проявляется только в местах короны, связанных с активными областями.F-спектр короны формируется благодаря рассеянию солнечного излучения на частичках межпланетной пыли. В непосредственной близости к Солнцу пыль существовать не может, поэтому F-корона начинает проявлять себя на некотором отдалении от солнца.Солнечная корона является источником сильного радиоизлучения. То, что Солнце излучает радиоволны стало известно в 1942—1943 гг., но то, что источником является корона стало известно пять лет спустя во время солнечного затмения. В радиодиапазоне солнечное затмение началось гораздо раньше и закончилось гораздо позже, чем в видимом. При этом во время полной фазы затмения радиоизлучение не сводилось к нулю. Солнечное радиоизлучение состоит из двух компонент: постоянной и спорадической. Постоянный компонент формируется свободно-свободными переходами электронов в электрическом поле ионов. Спорадический компонент связан с активными образованиями на Солнце.Основные структура, наблюдаемая в короне — корональные арки, лучи, перья, опахала и др.
46.Главнейшие астрономические постоянные
Экваториальный радиус Земли
|
6378,160 км
|
Полярный радиус Земли
|
6356,777 км
|
Сжатие земного эллипсоида
|
1:298,25
|
Средний радиус Земли
|
6371,032 км
|
Радиус шара, равного эллипсоиду по объёму
|
R'=6371,1097 км
|
Радиус шара, равного эллипсоиду по поверхности
|
R''=6371,11608 км
|
Длина меридиана
|
40008,550 км
|
Длина экватора
|
40075,696 км
|
Площадь поверхности Земли
|
510,2*106 км2
|
Площадь поверхности суши
|
149*106 км2
|
Объём Земли
|
1,083*1012км3
|
Масса Земли
|
5976 *1021кг
|
Средняя плотность Земли
|
5518 кг*м-3
|
Угловая скорость вращения Земли
|
7,292115*10-5 рад*с-1
|
Момент инерции Земли относительно оси вращения
|
8,104*1037кг*м2
|
Центробежное ускорение на Экваторе
|
3,392*10-2м*с-2
|
Центробежное ускорение на полюсе
|
0
|
Время оборота Земли вокруг своей оси(звёздные сутки)
|
23ч 56мин 4,0905с = 86164,0905с среднего солнечного времени
|
Средняя скорость движения земли по орбите
|
29,765 км*с-1
|
Угол наклона оси вращения Земли к плоскости орбиты Земли (к плоскости эклиптики) для 1950 года
|
66°33'15.2''
|
Эксцентриситет орбиты Земли
|
0,01673
|
Период обращения земли вокруг Солнца (год)
|
365,2564 средних солнечных суток
|
Среднее расстояние Земли от Солнца
|
149,5*106 км
|
Расстояние до Солнца в перигелии
|
147,117*106км
|
Расстояние до Солнца в афелии
|
152,083*106км
|
Период прецессии
|
26000 лет
|
Период нутации
|
18,6 года
|
Период движения полюсов
|
1,2 года
|
Масса Солнца
|
1,94*1030 кг
|
Отношение массы Земли к массе Солнца
|
1:333434
|
Среднее расстояние между центрами Земли и Луны
|
384395 км
|
Масса Луны
|
73,5*1021 кг
|
Отношение массы Земли к массе Луны
|
81,53
|
Средняя плотность Луны
|
3,33 г*см-3
|
Средний период обращения Луны вокруг Земли - сидерический (звёздный) месяц
|
27,321661 средних солнечных суток
|
Угол наклона орбиты Луны к Эклиптике
|
4°59' - 5°18'
|
Средний эксцентриситет орбиты луны
|
0,0549
|
Продолжительность лунных суток
|
29,53 земных суток
|
Синодический месяц
|
29,5306 средних солнечных суток
|
Драконический месяц
|
27,2122 средних солнечных суток
|
Аномалистический месяц
|
27,5546 средних солнечных суток
|
Тропический месяц
|
27,3216 средних солнечных суток
|
Аномалистический год
|
365,2597 средних солнечных суток
|
Тропический год
|
365,2422 средних солнечных суток
|
47.Виды галактик.
Эллиптические галактики составляют 25% от общего числа галактик высокой светимости. Их прнято обозначать буквой Е (elliptical), к которым добавляется цифра от 0 до 6, соответствующая степени уплощения системы (Е0 - "шаровые" галактики, Е6 - наиболее "сплюснутые"). Цвет у эллиптических галактик красноватый, так как они состоят преимущественно из старых звезд.
Холодного газа в таких системах почти нет, но наиболее массивные из них заполнены очень разреженным горячим газом, температурой более миллиона градусов. Излучение спектра этих галактик показывает, что звезды в них движутся с почти одинаковой вероятностью во всех направлениях, а вращаются они медленно. Плотность звезд в единице объема увеличивается к центру и плавно спадает от центра к краю.
Спиральные галактики.
Спиральные галактики по внешнему виду напоминают чечевицу или двояковыпуклую линзу. На галактическом диске заметен спиральный узор из 2-х и более (до 10) закрученных в одну сторону ветвей или рукавов, выходящих из центра галактики. В спиральных рукавах сосредоточено много молодых ярких звезд и нагреваемых ими светящихся газовых облаков. Диск погружен в разреженное слабосветящееся сфероидальное облако звезд - гало. К этому классу принадлежат половина всех наблюдаемых галактик. Обозначаются - буквой S. Звезды и газ в них обращаются вокруг центра галактики, причем с разной угловой скоростью на разных расстояниях от центра.
Плоская, дискообразная форма объясняется вращением. Во время образования галактики центробежные силы препятствовали сжатию протогалактического облака или системы облаков газа в направлении, перпендикулярном оси вращения. В результате газ концентрировался к некоторой плоскости — так образовались вращающиеся диски спиральных галактик. Диск вращался не как единое твёрдое тело (например, колесо): период обращения звёзд по краям диска намного больше, чем во внутренних частях.
. Все звёзды, населяющие галактику, гравитационно взаимодействуют, в результате чего создаётся общее гравитационное поле галактики. Известно несколько причин, по которым при вращении массивного диска возникают регулярные уплотнения вещества, распространяющиеся подобно волнам на поверхности воды. В галактиках они имеют форму спиралей, что связано с характером вращения диска. В спиральных ветвях наблюдается повышение плотности, как звёзд, так и межзвёздного вещества — пыли и газа. Повышенная плотность газа ускоряет образование и последующее сжатие газовых облаков и тем самым стимулирует рождение новых звёзд. Поэтому спиральные ветви являются местом интенсивного звездообразования.
Спиральные ветви — это волны плотности, бегущие по вращающемуся диску. Поэтому через некоторое время звезда, родившаяся в спирали, оказывается вне её. У самых ярких и массивных звёзд очень короткий срок жизни, они сгорают, не успев покинуть спиральную ветвь. Менее массивные звёзды живут долго и доживают свой век в межспиральном пространстве диска.
Линзообразные галактики
Линзообразные галактики - это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Обозначаются - S0. Их примерно 20% среди всех звездных систем. В этих галактиках яркое основное тело, «линза», окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.
Карликовые галактики
Встречаются среди галактик и карликовые, которые не вписываются в классификацию Хаббла. Они в несколько десятков раз меньше по размерам и массе, чем нормальные галактики. Но галактики-карлики отличаются от остальных не только величиной. Жизненный путь этих звездных систем настолько своеобразен, что накладывает отпечаток и на свойства звезд внутри галактик, и на свойства в целом. Обозначаются - d.
Их можно разделить на карликовые эллиптические и карликовые сфероидальные. Галактик с хорошо развитыми ветвями среди карликов не встречается. Скорее всего для образования спиралей нужен массивный звездный диск, масса же карликовых галактик недостаточна для этого.
Радиогалактики
Радиогалактики являются мощными источниками радиоизлучения; в радиодиапазоне их излучение значительно мощнее, чем в области оптических длин волн. У большей части мощных радиогалактик основная часть радиоизлучения идет из протяженных областей (сотни тысяч парсек), расположенных симметрично по обе стороны от видимой в оптических лучах галактики.
Большие спиральные звездные системы
Существует также класс больших спиральных звездных систем, поверхностная яркость которых намного меньше, чем у нормальных. Необычным в них является низкая плотность звездного диска: новые звезды по неясным причинам почти не рождаются в этих галактиках. Их называют анемичными (хилыми) или спиральными галактиками низкой яркости.
48.Наша галактика
Английский ученый Вильям Гершель первым указал правильный путь, состоящий в подсчете звезд в малых избранных участках неба. Гершель предполагал, что все звезды подобны Солнцу не только по своей природе, но и по светимости. В его время, на рубеже XVIII и XIX вв., параллаксы и светимости звезд были еще неизвестны. Если бы все звезды были одинаковой светимости и их плотность в пространстве была бы везде одинакова, то, переходя к звездам на одну видимую звездную величину, то есть в 2,512 раза более слабым, мы переходили бы к объему сферы с радиусом, в корень(2,512) = 1,6 раза большим. А ее объем и, следовательно, число звезд в ней должны быть тогда в 4 раза больше предыдущего. Но фактический подсчет показывает, что в разных направлениях этот прирост разный, и с ослаблением блеска звезд он уменьшается. Можно было бы думать, что мы находимся в центре звездной Вселенной, плотность звезд в которой убывает по всем направлениям.
В действительности дело гораздо сложнее, так как у звезд разная светимость, число звезд разной светимости неодинаково, да еще существует ослабление света звезд межзвездной космической пылью. Оно тем больше, чем звезда дальше от нас, и по разным направлениям различно. В. Я. Струве впервые обнаружил это поглощение света и доказал, что с приближением к светлой полосе Млечного Пути плотность звезд в пространстве растет. Полоса Млечного Пути опоясывает все небо по большому кругу. Значит, мы находимся вблизи его плоскости, которую называют галактической. В Млечном Пути наблюдаются отдельные облакообразные сгущения. Отчасти это обусловлено реальным облакообразным расположением слабых (т. е. далеких) звезд, из которых он состоит, отчасти тем, что местами его закрывают облака космической пыли. Такое темное облако можно заметить около звезды Денеб в созвездии Лебедя. Как раз в этом созвездии начинается раздвоение Млечного Пути на две ветви, соединяющихся в южном полушарии неба. Это раздвоение кажущееся. Оно вызвано скоплением космической пыли, заслоняющей часть самых ярких мест Млечного Пути, находящихся в созвездиях Скорпиона и Стрельца.
Постепенно выяснилось, что звездыМлечного Пути — это основная часть нашей сильно сплющенной Галактики. Дальше всего от центра, находящегося в направлении созвездия Стрельца, Галактика тянется вблизи плоскости Млечного Пути, и в этом направлении мы видим больше всего далеких, т. е. слабых, звезд. В перпендикулярном направлении плотность звезд падает, следовательно, в этом направлении Галактика простирается не так далеко.
Иногда неудачно говорят, что Млечный Путь — это и есть наша Галактика. Млечный Путь — это видимое нами на небе светлое кольцо, а наша Галактика — это пространственная звездная система. Большинство ее звезд мы видим в полосе Млечного Пути, но ими она не исчерпывается. В Галактику входят звезды всех созвездий.
Подсчитано число звезд ярче каждой звездной величины вплоть до 21-й. Оно составляет 2*109 звезд. Конечно, это далеко не исчерпывает звездное «население» нашей звездной системы — Галактики. Масса Галактики оценивается по ее вращению и составляет около 2*1011 масс Солнца.
Контуры Галактики были намечены по расположению в пространстве сверхгигантов, которые можно видеть до наиболее далеких расстояний. Это цефеиды и горячие сверхгиганты. Оказалось, что в центре Галактики находится ее ядро, огромное уплотненное скопление звезд диаметром 1000—2000 пс. Оно расположено от нас на расстоянии почти 10 000 пс (30 000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто от нас завесой облаков космической пыли. В состав ядра Галактики входят красные гиганты и короткопериодические цефеиды. Они называются населением II типа, или старыми звездами. Сверхгиганты и цефеиды классические составляют более молодое население I типа. Оно располагается дальше от центра и образует сплющенную систему. Среди звезд этой сплющенной системы в форме тонкого диска расположена пылевая материя.
49.Галактики.Скопления галактик. Звезды во Вселенной обладают тенденцией образовывать иерархию систем различных масштабов. Важнейшее звено иерархии – огромные системы сотен тысяч звезд, называемые галактиками. Часть вещества, быть может даже значительная, приходится на разреженную среду, которая заполняет пространство между звездами и галактиками. Галактики образуют более обширные системы-скопления галактик. Скопления галактик самые крупные объекты во вселенной.Звезды в пределах скопления галактик расположены примерно равномерно. Также расположены остальные вещества.
50.Радиогалактики. РАДИОГАЛАКТИКИ. Радиогалактиками называют галактики с мощным радиоизлучением, которое в тысячу и более раз превышает мощность радиоизлучения таких галактик как наша Причиной мощного радиоизлучения является выброс высокоэнергичных частиц (протонов и электронов) из активного ядра галактики, где они получают большую энергию и разгоняются до околосветовых скоростей. Радиоизлучение возникает при движении быстрых электронов в слабых магнитных полях. Основной поток радиоволн в некоторых случаях исходит из центральной части галактики, а в некоторых – из гигантских по объему областей за пределами галактики, которые обычно расположены симметрично относительно ее ядра. Радиогалактики почти всегда относятся к числу массивных эллиптических галактик. Ближайшая к нам радиогалактика – яркая пекулярная галактика NGC 5128 известная как радиоисточник Центавр А (эллиптическая галактика с протяженным газопылевым диском вдоль ее малой оси, который наблюдается с ребра). Более мощной радиогалактикой является ярчайшая эллиптическая галактика М87 в скоплении Девы. Наиболее мощные из известных радиогалактик излучают (в форме радиоволн) энергию, которая сопоставима с энергией оптического излучения всех звезд галактики вместе взятых. Примером таких объектов является радиогалактика Лебедь А, которая, находясь на расстоянии более миллиарда св. лет от нас, тем не менее, является одним из самых ярких радиоисточников на небе.
Квазары. КВАЗАРЫ, или квазизвездные объекты (сокращенно – QSO), по наблюдаемым свойствам очень похожи на ядра галактик Сейферта, но превосходят их по мощности выделения энергии в 100–1000 раз. Это – самые мощные стационарные источники оптического излучения в природе. Были открыты в 1960-х как радиоисточники с очень малыми угловыми размерами, на месте которых в оптическом диапазоне спектра видны слабые объекты, похожие на голубоватые звездочки. Однако, эти «звездочки» оказались обладающими большим красным смещением, выдающим их внегалактическую природу. Позднее выяснилось, что мощное радиоизлучение характерно только для части из них. В отличие от звезд, у квазаров оптическое излучение имеет нетепловую природу и связано с очень мощным выделением энергии (до 1041Вт) в небольшом объеме пространства. Невероятно высокая светимость квазаров позволяет уверенно наблюдать их с расстояний в миллиарды св. лет. При этом видимая яркость квазаров, как правило, заметно меняется на самых различных интервалах времени – от нескольких лет до долей суток.
Как правило, излучение «материнской» галактики, внутри которой находится квазар, «тонет» в ярком свете квазара, так что ее обнаружение представляет сложную, хотя и решаемую проблему. Среди галактик, связанных с квазарами, оказались галактики различных типов. Многие из них, по-видимому, являются «пекулярными» галактиками с искаженной структурой.
Квазары представляют собой кратковременную (по сравнению с возрастом галактик) стадию очень высокой активности галактических ядер, которая имеет место на определенной стадии их эволюции. Предположительно, механизм выделения энергии в квазарах (и других типах активных ядер) связан с падением вещества на сверхмассивные черные дыры, существующие в ядрах большинства массивных галактик.